• Title/Summary/Keyword: Two-channel

Search Result 4,017, Processing Time 0.033 seconds

A 3.125Gb/s/ch Low-Power CMOS Transceiver with an LVDS Driver (LVDS 구동 회로를 이용한 3.125Gb/s/ch 저전력 CMOS 송수신기)

  • Ahn, Hee-Sun;Park, Won-Ki;Lee, Sung-Chul;Jeong, Hang-Geun
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.46 no.9
    • /
    • pp.7-13
    • /
    • 2009
  • This paper presents a multi-channel transceiver that achieves a data rate of 3.125Gb/s/ch. The LVDS is used because of its noise immunity and low power consumption. And a pre-emphasis circuit is also proposed to increase the transmitter speed. On the receiver side, a low-power CDR(clock and data recovery) using 1/4-rate clock based on dual-interpolator is proposed. The CDR generates needed additional clocks in each recovery part internally using only inverters. Therefore each part can be supplied with the same number of 1/4-rate clocks from a clock generator as in 1/2-rate clock method. Thus, the reduction of a clock frequency relaxes the speed limitation and lowers power dissipation. The prototype chip is comprised of two channels and was fabricated in a $0.18{\mu}m$ standard CMOS process. The output jitter of transmitter is loops, peak-to-peak(0.31UI) and the measured recovered clock jitter is 47.33ps, peak-to-peak which is equivalent to 3.7% of a clock period. The area of the chip is $3.5mm^2$ and the power consumption is about 119mW/ch.

Effects of Launching Vehicle's Velocity on the Performance of FTS Receiver (발사체의 속도가 FTS 수신기의 성능에 미치는 영향)

  • Kang, Sanggee
    • Journal of Satellite, Information and Communications
    • /
    • v.9 no.3
    • /
    • pp.27-32
    • /
    • 2014
  • A doppler shift is generated by moving a transmitter or receiver operated in communication systems. The doppler frequency shift between a transmitter and a receiver or the frequency offset present in transceivers must be removed to get the wanted system performance. FTS is used for preventing an accident from operating abnormally and for guaranteeing public protection. A launching vehicle's initial velocity is very fast in order to escape the earth and the amount of doppler shift is large. Recently many studies to adopt the next generation FTS are ongoing. To introduce new FTS, the effects of doppler shift on the performance of the new FTS must be studied. In this paper the doppler effect caused by launching vehicle's velocity affecting the performance of FTS receiver is investigated into two cases, one is for EFTS as a digital FTS and the other is for FTS using a tone signal. Noncoherent DPSK and noncoherent CPFSK are considered as the modulation methods of EFTS. In the cases of the doppler frequency shift of 200Hz present in EFTS using noncoherent DPSK and noncoherent CPFSK are simulated. Simulation results show that $E_b/N_o$ of 0.5dB deteriorates in the region of near BER of about $10^{-5}$ in RS coding. And there is no performance variation in $E_b/N_o$ or $E_b/N_o$ is worsened about 0.1dB in the same BER region for the case of using convolutional and BCH coding. Quadrature detector used in FTS using tone signals is not influenced by the doppler frequency shift.

A Coexistence Mitigation Scheme in IEEE 802.15.4-based WBAN (IEEE 802.15.4 기반 WBAN의 공존 문제 완화 기법)

  • Choi, Jong-hyeon;Kim, Byoung-seon;Cho, Jin-sung
    • Journal of Internet Computing and Services
    • /
    • v.16 no.3
    • /
    • pp.1-11
    • /
    • 2015
  • WBAN(Wireless Body Area Network) operating around the human body aims at medical and non-medical service at the same time. and it is the short-range communication technology requiring low-power, various data rate and high reliability. Various studies is performing for IEEE 802.15.4, because IEEE 802.15.4 can provide high compatibility for operate WBAN among communication standard satisfiable these requirements. Meanwhile, in the case of coexisting many IEEE 802.15.4-based WBAN, signal interference and collision are the main cause that is decreasing data reliability. but IEEE 802.15.4 Standard does not consider about coexistence of many networks. so it needs improvement. In this paper, To solve about this problem, identify coexistence problem of IEEE 802.15.4-based WBAN by preliminary experiments. and propose a scheme to mitigate the reliability decrease at multiple coexistence WBAN. The proposed scheme can be classified in two steps. The first step is avoidance to collision on the CFP through improving data transmission. The second step is mitigation collision through converting channel access method. Proposed scheme is verified the performance by performing comparison experiment with Standard-based WBAN.

Differences of EEG and Sleep Structure in Pediatric Sleep Apnea and Controls (소아 수면무호흡증 환아와 정상 소아에서 수면구조와 뇌파 양상 차이)

  • Ahn, Young-Min;Shin, Hong-Beom;Kim, Eui-Joong
    • Sleep Medicine and Psychophysiology
    • /
    • v.15 no.2
    • /
    • pp.71-76
    • /
    • 2008
  • Introduction: In this study, we compared sleep structure, EEG characteristic of pediatric obstructive sleep apnea (OSA) and normal controls which were matched in sex and age. Methods: Fifteen children (male:female=4:11) who complained snoring and were suspected to have sleep apnea and their age and sex matched normal controls (male:female=5:10) have been done nocturnal polysomnography (NPSG). Sleep parameters, sleep apnea variables and relative spectral components of EEG from NPSG have been compared between both groups. Results: Pediatric OSA group were distinguished from normal controls in terms of apnea index, respiratory disturbance index and nadir of oxyhemoglobulin desaturation. Pediatric OSA group showed increased percent of sleep stage 1, decreased rapid eye movement sleep percent and increased delta power in O1 EEG channel. However other sleep parameters and spectral powers were not different between two groups. Conclusion: In pediatric OSA group, sleep structure parameter disruption may be not prominent as the previous studies for adult OSA group because of including mild OSA data in diagnostic criteria. In addition, EEG changes might not be distinct due to low arousal index compared to adult OSA patients. We can observe general characteristics and particularity of pediatric OSA through this study.

  • PDF

Characteristics of amorphous IZTO-based transparent thin film transistors (비정질 IZTO기반의 투명 박막 트렌지스터 특성)

  • Shin, Han-Jae;Lee, Keun-Young;Han, Dong-Cheul;Lee, Do-Kyung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.151-151
    • /
    • 2009
  • Recently, there has been increasing interest in amorphous oxide semiconductors to find alternative materials for an amorphous silicon or organic semiconductor layer as a channel in thin film transistors(TFTs) for transparent electronic devices owing to their high mobility and low photo-sensitivity. The fabriction of amorphous oxide-based TFTs at room temperature on plastic substrates is a key technology to realize transparent flexible electronics. Amorphous oxides allows for controllable conductivity, which permits it to be used both as a transparent semiconductor or conductor, and so to be used both as active and source/drain layers in TFTs. One of the materials that is being responsible for this revolution in the electronics is indium-zinc-tin oxide(IZTO). Since this is relatively new material, it is important to study the properties of room-temperature deposited IZTO thin films and exploration in a possible integration of the material in flexible TFT devices. In this research, we deposited IZTO thin films on polyethylene naphthalate substrate at room temperature by using magnetron sputtering system and investigated their properties. Furthermore, we revealed the fabrication and characteristics of top-gate-type transparent TFTs with IZTO layers, seen in Fig. 1. The experimental results show that by varying the oxygen flow rate during deposition, it can be prepared the IZTO thin films of two-types; One a conductive film that exhibits a resistivity of $2\times10^{-4}$ ohm${\cdot}$cm; the other, semiconductor film with a resistivity of 9 ohm${\cdot}$cm. The TFT devices with IZTO layers are optically transparent in visible region and operate in enhancement mode. The threshold voltage, field effect mobility, on-off current ratio, and sub-threshold slope of the TFT are -0.5 V, $7.2\;cm^2/Vs$, $\sim10^7$ and 0.2 V/decade, respectively. These results will contribute to applications of select TFT to transparent flexible electronics.

  • PDF

GPS receiver and orbit determination system on-board VSOP satellite

  • Nishimura, Toshimitsu;Harigae, Masatoshi;Maeda, Hiroaki
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10b
    • /
    • pp.1649-1654
    • /
    • 1991
  • In 1995 the VSOP satellite, which is called MUSES-B in Japan, will be launched under the VLBI Space Observatory Programme(VSOP) promoted by ISAS(Institute of Space and Astronautical Science) of Japan. We are now developing the GPS Receiver(GPSR) and On-board Orbit Determination System. This paper describes the GPS(Global Positioning System), VSOP, GPSR(GPS Receiver system) configuration and the results of the GPS system analysis. The GPSR consists of three GPS antennas and 5 channel receiver package. In the receiver package, there are two 16 bits microprocessing units. The power consumption is 25 Watts in average and the weight is 8.5 kg. Three GPS antennas on board enable GPSR to receive GPS signals from any NAVSTARs(GPS satellites) which are visible. NAVSATR's visibility is described as follows. The VSOP satellite flies from 1, 000 km to 20, 000 km in height on the elliptical orbit around the earth. On the other hand, the orbit of NAVSTARs are nearly circular and about 20, 000 km in height. GPSR can't receive the GPS signals near the apogee, because NAVSTARs transmit the GPS signals through the NAVSTAR's narrow beam antennas directed toward the earth. However near the perigee, GPSR can receive from 12 to 15 GPS signals. More than 4 GPS signals can be received for 40 minutes, which are related to GDOP(Geometric Dillusion Of Precision of selected NAVSTARs). Because there are a lot of visible NAVSTARs, GDOP is small near the perigee. This is a favorqble condition for GPSR. Orbit determination system onboard VSOP satellite consists of a Kalman filter and a precise orbit propagator. Near the perigee, the Kalman filter can eliminate the orbit propagation error using the observed data by GPSR. Except a perigee, precise onboard orbit propagator propagates the orbit, taking into account accelerations such as gravities of the earth, the sun, the moon, and other acceleration caused by the solar pressure. But there remain some amount of calculation and integration errors. When VSOP satellite returns to the perigee, the Kalman filter eliminates the error of the orbit determined by the propagator. After the error is eliminated, VSOP satellite flies out towards an apogee again. The analysis of the orbit determination is performed by the covariance analysis method. Number of the states of the onboard filter is 8. As for a true model, we assume that it is based on the actual error dynamics that include the Selective Availability of GPS called 'SA', having 17 states. Analytical results for position and velocity are tabulated and illustrated, in the sequel. These show that the position and the velocity error are about 40 m and 0.008 m/sec at the perigee, and are about 110 m and 0.012 m/sec at the apogee, respectively.

  • PDF

An Experimental Study on Scour at V-shaped Riffle (V형 여울에서 발생하는 세굴에 관한 실험 연구)

  • Yu, Dae-Young;Park, Jung-Hwan;Woo, Hyo-Seop
    • Journal of Korea Water Resources Association
    • /
    • v.36 no.3 s.134
    • /
    • pp.507-520
    • /
    • 2003
  • A V-shaped riffle is an artificial hydraulic structure haying two wings from the streamside with a narrow opening in between. It is usually made of crushed stones or large boulders. It limits channel width and accelerates the flow through the constricted section causing a local scour just downstream. The V-shaped riffle provides with a unique aquatic habitat by forming a pool and sandbars around the pool edge, increasing local morphologic, hydraulic and sedimentological diversity. This study investigates experimentally the scour characteristics of the V-shaped riffle in the sandbed stream and proposes a predictive equation for the scour. Total 45 cases of experiments were conducted to examine the effect of hydraulic factors and configuration of V-shaped riffle on the geometry of scour holes. From the comparison of the experimental results of this study with the predictive equation of spur dike by Breusers and Raudkivi(1991), it is found that their predictive equation of spur dike underestimates the maximum scour depth downstream of the V-shaped riffle. h new predictive equation for the maximum scour depth was developed using the non-dimensional hydraulic and geometrical variables. The parameters used in the proposed equations were determined using the experimental data. The analysis reveals that the scour depth is dependent dominantly on the Froude number at the opening of the V-shaped riffle, while the angle of riffle and the opening width also affect the scour depth. The proposed equation for the scour of V-shaped riffle well agrees with the experimental data. It can be used for estimating the scour of the V-shaped riffle in sandbed streams.

A Study on Relationship between Point Load Strength Index and Abrasion Rate of Sediment Particle (퇴적물 입자의 점하중강도지수와 마식율의 관계에 대한 연구)

  • Kim, Jong-Yeon
    • Journal of the Korean Geographical Society
    • /
    • v.43 no.6
    • /
    • pp.808-823
    • /
    • 2008
  • Sediment abrasion in rivers is caused by the interaction between bedrock channel bed and sediment particles transported through the river. Abrasion rate of sediment particles in rivers is controlled by two major factors; Sediment transport conditions including hydraulic conditions form the erosive forces and physical and chemical strengths of the particles form a resistance force against abrasion and other erosional processes. Physical experiments were performed to find the role of each variable on sediment abrasion process. Total 266 sediment particles were used in this experiment. All sediment particles were divided into 11 independent sediment groups with sediment particle size and sediment loads. Each sediment groups were abraded in tumbling mill for up to 8 hours. Changes in weight were recorded by run and total: 2,128 cases of abrasion rate were recoded. Physical strength of rock particles was measured with point load strength index. It is found that sediment abrasion rate has a negative functional relationship point load strength index ($I_{a(50)}$) ($R^2=0.22$). It was suggested that physical strength of sediment particles set the "maximum possible abrasion rate'. As sediment flux increases, abrasion rates of sediment particles with similar point load strength index were changed. It could be concluded that not only physical characteristics of sediment particles, but also sediment transport conditions control sediment abrasion rates.

Design and Performance Evaluation of the DFT-Spread OFDM Communication System for Phase Noise Compensation and PAPR Reduction (위상 잡음 보상과 PAPR 저감을 고려한 DFT-Spread OFDM 통신 시스템 설계와 성능 평가)

  • Li Ying-Shan;Kim Nam-Il;Kim Sang-Woo;Ryu Heung-Gyoon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.17 no.7 s.110
    • /
    • pp.638-647
    • /
    • 2006
  • Recently, the DFT-Spread OFDM has been studied for the PAPR reduction. However, the DFT-Spread OFDM produces more ICI and SCI problems than OFDM because phase offset mismatch of the DFT spreading code results from the random phase noise in the oscillator. In this paper, at first, phase noise influence on the DFT-Spread OFDM system is theoretically analyzed in terms of the BER performance. Then, the conventional ICI self-cancellation methods are discussed and two kinds of ICI self-cancellation methods are newly proposed. Lastly, a new DFT-Spread OFDM system which selectively adopts the ICI self-cancellation technique is proposed to resolve the interference problem and PAPR reduction simultaneously. Proposednew DFT-Spread OFDM system can minimize performance degradation caused by phase noise, and still maintain the low PAPR property. Among the studied methods, DFT-Spread OFDM with data-conjugate method or newly proposed symmetric data-conjugate method show the significant performance improvements, compared with the DFT-Spread OFDM without ICI self-cancellation schemes. The data-conjugate method is slightly better than symmetric data-conjugate method.

Spatial and Temporal Variability of Residual Current and Salinity according to Freshwater Discharge in Yeoungsan River Estuary (방류 유무에 따른 영산강 하구역의 시공간적 잔차류 및 염분 변화)

  • Kim, Jong-Wook;Yoon, Byung Il;Song, Jin Il;Lim, Chae Wook;Woo, Seung-Buhm
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.25 no.2
    • /
    • pp.103-111
    • /
    • 2013
  • In this study, field measurements were conducted in the section about 7 km from sea dike to westward. The observations of along channel current were carried out, and water temperature and salinity were measured simultaneously at 10 stations during one tidal cycle, and sampling interval is 1 hour. The maximum ebb current is about 1.5 m/s at the surface layer but flood current is 0.4 m/s at the bottom layer during discharge period. Residual current during river discharge shows two layer structures which is typical characteristic of the estuary system. On the other hand, residual current during a period with no discharge has shown multi-layer structure different from general estuarine systems. The distribution of high salinity can be seen at the bottom layer as the effect of discharge does not reach down to the bottom layer during discharge. As a result, freshwater is not effected at the bottom layer during observation, and mixing of surface layer to bottom layer is reduced by stratification.