• Title/Summary/Keyword: Two-channel

Search Result 3,994, Processing Time 0.033 seconds

Uplink Achievable Rate analysis of Massive MIMO Systems in Transmit-correlated Ricean Fading Environments

  • Yixin, Xu;Fulai, Liu;Zixuan, Zhang;Zhenxing, Sun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.1
    • /
    • pp.261-279
    • /
    • 2023
  • In this article, the uplink achievable rate is investigated for massive multiple-input multiple-output (MIMO) under correlated Ricean fading channel, where each base station (BS) and user are both deployed multiple antennas. Considering the availability of prior knowledge at BS, two different channel estimation approaches are adopted with and without prior knowledge. Based on these channel estimations, a two-layer decoding scheme is adopted with maximum ratio precoding as the first layer decoder and optimal second layer precoding in the second layer. Based on two aforementioned channel estimations and two-layer decoding scheme, the exact closed form expressions for uplink achievable rates are computed with and without prior knowledge, respectively. These derived expressions enable us to analyze the impacts of line-of-sight (LoS) component, two-layer decoding, data transmit power, pilot contamination, and spatially correlated Ricean fading. Then, numerical results illustrate that the system with spatially correlated Ricean fading channel is superior in terms of uplink achievable rate. Besides, it reveals that compared with the single-layer decoding, the two-layer decoding scheme can significantly improve the uplink achievable rate performance.

A Survey on Multiple Channel protocols for Ad Hoc Wireless Networks

  • Su, Xin;Shin, Seokjoo;Chung, Ilyong
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2009.04a
    • /
    • pp.842-845
    • /
    • 2009
  • Wireless ad hoc networks often suffer from rapidly degrading performance with the number of user increases in the network. One of the major reasons for this rapid degradation of performance is the fact that users are sharing a single channel. Obviously, the problem of using single shared channel schemes is that the probability of collision increases with the number of nodes. Fortunately, it is possible to solve this problem with multi-channel approaches. Due to the especial properties of multiple channels, using the multiple channels is more efficient than single channel because it enhances the capacity of the channel and reduces the error rate during data transmission. Some multi-channel schemes us one dedicated channel for control packets and one separate channel for data transmissions. On the other hand, another protocols use more than two channels for data transmissions. This paper summarizes six multiple channel protocols based on these two kinds of schemes. Then we compare them and discuss the research challenge of multiple channel protocols.

The investigation of ship maneuvering with hydrodynamic effects between ships in curved narrow channel

  • Lee, Chun-Ki;Moon, Serng-Bae;Jeong, Tae-Gweon
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.8 no.1
    • /
    • pp.102-109
    • /
    • 2016
  • The hydrodynamic interaction between two large vessels can't be neglected when two large vessels are closed to each other in restricted waterways such as in a harbor or narrow channel. This paper is mainly concerned with the ship maneuvering motion based on the hydrodynamic interaction effects between two large vessels moving each other in curved narrow channel. In this research, the characteristic features of the hydrodynamic interaction forces between two large vessels are described and illustrated, and the effects of velocity ratio and the spacing between two vessels are summarized and discussed. Also, the Inchon outer harbor area through the PALMI island channel in Korea was selected, and the ship maneuvering simulation was carried out to propose an appropriate safe speed and distance between two ships, which is required to avoid sea accident in confined waters. From the inspection of this investigation, it indicates the following result. Under the condition of $SP_{12}{\leq}0:5L$, it may encounter a dangerous tendency of grounding or collision due to the combined effect of the interaction between ships and external forces. Also considering the interaction and wind effect as a parameter, an overtaken and overtaking vessel in narrow channel can navigate while keeping its own original course under the following conditions; the lateral separation between two ships is about kept at 0.6 times of ship length and 15 degrees of range in maximum rudder angle. On the other hand, two ships while overtaking in curved narrow channel such as Inchon outer harbor in Korea should be navigated under the following conditions; $SP_{12}$ is about kept at 1.0 times of ship length and the wind velocity should not be stronger than 10 m/s.

Hole Mobility Characteristics of Biaxially Strained SiGe/Si Channel Structure with High Ge Content (고농도의 Ge 함량을 가진 Biaxially Strained SiGe/Si Channel Structure의 정공 이동도 특성)

  • Jung, Jong-Wan
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.1
    • /
    • pp.44-48
    • /
    • 2008
  • Hole mobility characteristics of two representative biaxially strained SiGe/Si structures with high Ge contents are studied, They are single channel ($Si/Si_{1-x}Ge_x/Si$ substrate) and dual channel ($Si/Si_{1-y}Ge_y/Si_{1-x}Ge_x/Si$ substrate), where the former consists of a relaxed SiGe buffer layer with 60 % Ge content and a tensile-strained Si layer on top, and for the latter, a compressively strained SiGe layer is inserted between two layers, Owing to the hole mobility performance between a relaxed SiGe film and a compressive-strained SiGe film in the single channel and the dual channel, the hole mobility behaviors of two structures with respect to the Si cap layer thickness shows the opposite trend, Hole mobility increases with thicker Si cap layer for single channel structure, whereas it decreases with thicker Si cap layer for dual channel. This hole mobility characteristics could be easily explained by a simple capacitance model.

Simulation of Moving Storm in a Watershed Using Distributed Models

  • Choi, Gye-Woon;Lee, Hee-Seung;Ahn, Sang-Jin
    • Korean Journal of Hydrosciences
    • /
    • v.5
    • /
    • pp.1-16
    • /
    • 1994
  • In this paper distributed models for simulating spatially and temporally varied moving storm in a watershed were developed. The complete simulation in a watershed is achieved through two sequential flow simulations which are overland flow simulation and channel network flow simulation. Two dimensional continuity equation and momentum equation of kinematic approximation were used in the overland flow simulation. On the other hand, in the channel network simulation two types of governing equations which are one dimensional continuity and momentum equations between two adjacent sections in a channel, and continuity and energy equations at a channel junction were applied. The finite difference formulations were used in the channel network model. Macks Creek Experimental Watershed in Idaho, USA was selected as a target watershed and the moving storm on August 23, 1965, which continued from 3:30 P.M. to 5:30 P.M., was utilized. The rainfall intensity fo the moving storm in the watershed was temporally varied and the storm was continuously moved from one place to the other place in a watershed. Furthermore, runoff parameters, which are soil types, vegetation coverages, overland plane slopes, channel bed slopes and so on, are spatially varied. The good agreement between the hydrograph simulated using distributed models and the hydrograph observed by ARS are Shown. Also, the conservations of mass between upstreams and downstreams at channel junctions are well indicated and the wpatial and temporal vaiability in a watershed is well simulated using suggested distributed models.

  • PDF

Effects of Channel Structure on the Quality Competition of Exclusively Distributed Products

  • Kang, Yeong Seon
    • Asia Marketing Journal
    • /
    • v.19 no.4
    • /
    • pp.37-59
    • /
    • 2018
  • This study investigates the effects of the distribution channel structure on quality decisions under duopoly competition. I considers a set-up in which two retailers compete on product quality and retail price. In the set-up, the integrated retailer has the power to determine the quality of its exclusive product, while the decentralized retailer does not. For the decentralized retailer, the supplier determines product quality. I find that asymmetric pairs of a decentralized channel by one retailer and an integrated channel by the other retailer can be a Nash equilibrium in a simultaneous-channel-choice model. The two retailers select different levels of quality, and this quality competition benefits retailers by softening price competition. In a sequential-channel-choice model, I find that the leader can obtain a first-mover advantage. From the perspective of the supplier, which can decide the distribution channel structure and level of quality, both suppliers choose the decentralized channel in equilibrium.

Random Access Channel with Retransmission Gain

  • Shi, Junmin;Sun, Yi;Zhang, Xiaochen;Xiao, Jizhong
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.2 no.3
    • /
    • pp.148-159
    • /
    • 2013
  • An analysis of the throughput and stability region of random access systems is currently of interest in research and industry. This study evaluated the performance of a multiuser random access channel with a retransmission gain. The channel was composed of a media access control (MAC) determined by the transmission probabilities and a multiuser communication channel characterized by the packet reception probabilities as functions of the number of packet transmissions and the collision status. The analysis began with an illustrative two-user channel, and was extended to a general multiuser channel. For the two-user channel, a sufficient condition was derived, under which the maximum throughput was achieved with a control-free MAC. For the channel with retransmission gain, the maximum steady throughput was obtained in a closed form. The condition under which the random access channel can acquire retransmission gain was also obtained. The stability region of the general random access channel was derived. These results include those of the well-known orthogonal channel, collision channel and slotted Aloha channel with packet reception as a special instance. The analytical and numerical results showed that exploiting the retransmission gain can increase the throughput significantly and expand the stability region of the random access channel. The analytical results predicted the performance in the simulations quite well.

  • PDF

Two-Phase Flow Analysis in Multi-Channel

  • Ha Man-Yeong;Kim Cheol-Hwan;Jung Yong-Won;Heo Seong-Geun
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.6
    • /
    • pp.840-848
    • /
    • 2006
  • We carried out numerical studies to investigate the single- and two-phase flow characteristics in the single- and multi-channels. We used the finite volume method to solve the mass and momentum conservation equations. The volume of fluid model is used to predict the two-phase flow in the channel. We obtained the distribution of velocity fields, pressure drop and air volume fraction for different water mass flow rates. We also calculated the distribution of mass flow rates in the multi-channels to understand how the flow is distributed in the channels. The calculated results for the single- and two-phase flow are partly compared with the present experimental data both qualitatively and quantitatively, showing relatively good agreement between them. The numerical scheme used in this study predicts well the characteristics of single-and two-phase flow in a multi-channel.

The Impact of the Internet Channel Introduction Depending on the Ownership of the Internet Channel (도입주체에 따른 인터넷경로의 도입효과)

  • Yoo, Weon-Sang
    • Journal of Global Scholars of Marketing Science
    • /
    • v.19 no.1
    • /
    • pp.37-46
    • /
    • 2009
  • The Census Bureau of the Department of Commerce announced in May 2008 that U.S. retail e-commerce sales for 2006 reached $ 107 billion, up from $ 87 billion in 2005 - an increase of 22 percent. From 2001 to 2006, retail e-sales increased at an average annual growth rate of 25.4 percent. The explosive growth of E-Commerce has caused profound changes in marketing channel relationships and structures in many industries. Despite the great potential implications for both academicians and practitioners, there still exists a great deal of uncertainty about the impact of the Internet channel introduction on distribution channel management. The purpose of this study is to investigate how the ownership of the new Internet channel affects the existing channel members and consumers. To explore the above research questions, this study conducts well-controlled mathematical experiments to isolate the impact of the Internet channel by comparing before and after the Internet channel entry. The model consists of a monopolist manufacturer selling its product through a channel system including one independent physical store before the entry of an Internet store. The addition of the Internet store to this channel system results in a mixed channel comprised of two different types of channels. The new Internet store can be launched by the independent physical store such as Bestbuy. In this case, the physical retailer coordinates the two types of stores to maximize the joint profits from the two stores. The Internet store also can be introduced by an independent Internet retailer such as Amazon. In this case, a retail level competition occurs between the two types of stores. Although the manufacturer sells only one product, consumers view each product-outlet pair as a unique offering. Thus, the introduction of the Internet channel provides two product offerings for consumers. The channel structures analyzed in this study are illustrated in Fig.1. It is assumed that the manufacturer plays as a Stackelberg leader maximizing its own profits with the foresight of the independent retailer's optimal responses as typically assumed in previous analytical channel studies. As a Stackelberg follower, the independent physical retailer or independent Internet retailer maximizes its own profits, conditional on the manufacturer's wholesale price. The price competition between two the independent retailers is assumed to be a Bertrand Nash game. For simplicity, the marginal cost is set at zero, as typically assumed in this type of study. In order to explore the research questions above, this study develops a game theoretic model that possesses the following three key characteristics. First, the model explicitly captures the fact that an Internet channel and a physical store exist in two independent dimensions (one in physical space and the other in cyber space). This enables this model to demonstrate that the effect of adding an Internet store is different from that of adding another physical store. Second, the model reflects the fact that consumers are heterogeneous in their preferences for using a physical store and for using an Internet channel. Third, the model captures the vertical strategic interactions between an upstream manufacturer and a downstream retailer, making it possible to analyze the channel structure issues discussed in this paper. Although numerous previous models capture this vertical dimension of marketing channels, none simultaneously incorporates the three characteristics reflected in this model. The analysis results are summarized in Table 1. When the new Internet channel is introduced by the existing physical retailer and the retailer coordinates both types of stores to maximize the joint profits from the both stores, retail prices increase due to a combination of the coordination of the retail prices and the wider market coverage. The quantity sold does not significantly increase despite the wider market coverage, because the excessively high retail prices alleviate the market coverage effect to a degree. Interestingly, the coordinated total retail profits are lower than the combined retail profits of two competing independent retailers. This implies that when a physical retailer opens an Internet channel, the retailers could be better off managing the two channels separately rather than coordinating them, unless they have the foresight of the manufacturer's pricing behavior. It is also found that the introduction of an Internet channel affects the power balance of the channel. The retail competition is strong when an independent Internet store joins a channel with an independent physical retailer. This implies that each retailer in this structure has weak channel power. Due to intense retail competition, the manufacturer uses its channel power to increase its wholesale price to extract more profits from the total channel profit. However, the retailers cannot increase retail prices accordingly because of the intense retail level competition, leading to lower channel power. In this case, consumer welfare increases due to the wider market coverage and lower retail prices caused by the retail competition. The model employed for this study is not designed to capture all the characteristics of the Internet channel. The theoretical model in this study can also be applied for any stores that are not geographically constrained such as TV home shopping or catalog sales via mail. The reasons the model in this study is names as "Internet" are as follows: first, the most representative example of the stores that are not geographically constrained is the Internet. Second, catalog sales usually determine the target markets using the pre-specified mailing lists. In this aspect, the model used in this study is closer to the Internet than catalog sales. However, it would be a desirable future research direction to mathematically and theoretically distinguish the core differences among the stores that are not geographically constrained. The model is simplified by a set of assumptions to obtain mathematical traceability. First, this study assumes the price is the only strategic tool for competition. In the real world, however, various marketing variables can be used for competition. Therefore, a more realistic model can be designed if a model incorporates other various marketing variables such as service levels or operation costs. Second, this study assumes the market with one monopoly manufacturer. Therefore, the results from this study should be carefully interpreted considering this limitation. Future research could extend this limitation by introducing manufacturer level competition. Finally, some of the results are drawn from the assumption that the monopoly manufacturer is the Stackelberg leader. Although this is a standard assumption among game theoretic studies of this kind, we could gain deeper understanding and generalize our findings beyond this assumption if the model is analyzed by different game rules.

  • PDF

Orthogonal Frequency Division Multiple Access with Statistical Channel Quality Measurements Part-I: System and Channel Modeling (통계적 채널 Quality 정보를 이용한 직교 주파수분할 다중접속(OFDMA) Part-I: 시스템 및 채널 모델링)

  • Yoon, Seo-Khyun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.2A
    • /
    • pp.119-127
    • /
    • 2006
  • In this two-part paper, we consider dynamic resource allocation in orthogonal frequency division multiple access(OFDMA). To reduce the reverse link overhead for channel quality information(CQI) feedback, a set of sub-carriers are tied up to a sub-channel to be used as the unit of CQI feedback, user-multiplexing and the corresponding power/rate allocation. Specifically, we focus on two sub-channel structures, either aggregated or distributed, where the SNR distribution over a sub-channel is modeled as Ricean in general, and the channel quality of a sub-channel is summarized as the mean and variance of channel gain envelop divided by noise standard deviation. Then, we develop a generalized two step channel/resource allocation algorithm, which uses the two statistical measurements, and analyze the spectral efficiency of the OFDMA system in terms of average frequency utilization. An extension to proportional fair algorithm will also be addressed. As confirmed by numerical results, the aggregated structure is preferred especially when intending aggressive link adaptation.