• Title/Summary/Keyword: Two-Zone Model

Search Result 568, Processing Time 0.028 seconds

Uncertainty Analysis of Interzonal Airflow Rates by Tracer Gas Methods (추적가스를 이용한 실간환기량 산정방법에 따른 불확실성 해석)

  • Han, Hwa-Taik;Cho, Seok-Hyo
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.529-534
    • /
    • 2008
  • Interzonal air movements are important to characterize overall ventilation performance of complicated multi-zone buildings. Tracer gas techniques are widely used to measure ventilation rates, ventilation effectiveness, and interzonal air movements. Depending on the number of gases used, they are divided into single and multi tracer gas methods. This paper deals with the comparison of the tracer gas methods in measuring air exchange rate between rooms. Experiments have been conducted in a simple two-room model with known airflow rates. In multi-gas procedure, the concentration decays of two tracer gases, i.e SF6 and R134a are measured after simultaneous injections in each room. The single tracer gas method is also applied by injecting SF6 gas with a time lag between two rooms. The data reduction procedures are developed to obtain the interzonal airflow rate using the matrix inversion, and various data manipulation methods are tested, such as data shift, interpolation, and smoothing. Uncertainty for each airflow rate is investigated depending on the parameters based on the setting values.

  • PDF

Two case studies on structural analysis of transmission towers under downburst

  • Yang, FengLi;Zhang, HongJie
    • Wind and Structures
    • /
    • v.22 no.6
    • /
    • pp.685-701
    • /
    • 2016
  • Downbursts are of great harm to transmission lines and many towers can even be destroyed. The downburst wind field model by Chen and Letchford was applied, and the wind loads of two typical transmission towers in inland areas and littoral areas were calculated separately. Spatial finite element models of the transmission towers were established by elastic beam and link elements. The wind loads as well as the dead loads of conductors and insulators were simplified and applied on the suspension points by concentrated form. Structural analysis on two typical transmission towers under normal wind and downburst was completed. The bearing characteristics and the failure modes of the transmission towers under downburst were determined. The failure state of tower members can be judged by the calculated stress ratios. It shows that stress states of the tower members were mainly controlled by 45 degree wind load. For the inland areas with low deign wind velocity, though the structural height is not in the highest wind velocity zone of downburst, the wind load under downburst is much higher than that under normal wind. The main members above the transverse separator of the legs will be firstly destroyed. For the littoral areas with high deign wind velocity, the wind load under downburst is lower than under normal wind. Transmission towers are not controlled by the wind loads from downbursts in design process.

A Study on Tracer Gas Methodology to Measure Interzonal Airflow Rates (실간환기량 측정을 위한 추적가스 실험방법론에 관한 연구)

  • Han, Hwa-Taik;Cho, Seok-Hyo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.21 no.11
    • /
    • pp.606-612
    • /
    • 2009
  • Interzonal air movements are important to characterize overall ventilation performance of complicated multi-zone buildings. Tracer gas techniques are widely used to measure ventilation rates, ventilation effectiveness, and interzonal air movements. Depending on the number of gases used, they are divided into single and multi tracer gas methods. This paper deals with the comparison of the tracer gas methods in measuring air exchange rate between rooms. Experiments have been conducted in a simple two-room model with known airflow rates. In multi-gas procedure, the concentration decays of two tracer gases, i.e SF6 and R134a are measured after simultaneous injections in each room. The single tracer gas method is also applied by injecting SF6 gas with a time lag between two rooms. The data reduction procedures are developed to obtain the interzonal airflow rate using the matrix inversion, and various data manipulation methods are tested, such as data shift, interpolation, and smoothing. Uncertainty for each airflow rate is investigated depending on the parameters based on the setting values.

Settlement behavior and controlling effectiveness of two types of rigid pile structure embankments in high-speed railways

  • Wang, Changdan;Zhou, Shunhua;Wang, Binglong;Guo, Peijun;Su, Hui
    • Geomechanics and Engineering
    • /
    • v.11 no.6
    • /
    • pp.847-865
    • /
    • 2016
  • In this study, a series of geotechnical centrifugal tests were conducted to investigate the effectiveness of settlement control of two types of rigid pile structure embankments (PRSE) in collapsible loess under high-speed railway embankments. The research results show that ground reinforcement is required to reduce the post-construction settlement and settlement rate of the embankments. The rigid pile structure embankments using rigid piles can substantially reduce the embankment settlement in the construction of embankments on collapsible loess, and the efficiency in settlement reduction is affected by the pile spacing. The pile-raft structure embankments (PRSE) have much stronger ability in terms of the effectiveness of settlement control, while the pile-geogrid structure embankments (PGSE) provides rapid construction as well as economic benefits. Rational range of pile spacing of PRSE and PGSE are suggested based on the requirements of various railways design speeds. Furthermore, the time effectiveness of negative skin friction of piles and the action of pile-cap setting are also investigated. The relevant measures for improving the bearing capacity and two parts of transition zone forms as positive control mean have been suggested.

Development of Urban Inundation Analysis Model Using Dual-Drainage Concept (Dual-Drainage 개념에 의한 도시침수해석모형의 개발)

  • Lee, Chang Hee;Han, Kun Yeun;Noh, Joon Woo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.4B
    • /
    • pp.379-387
    • /
    • 2006
  • An urban inundation model coupling an one-dimensional stormwater model, SWMM(Storm Water Management Model), and a two-dimensional inundation model was developed to simulate inundation caused by the surcharge of storm sewers in urban areas. The limitation of this model which can not simulate the interaction between drainage systems and surcharged flow was resolved by developing Dual-Drainage inundation analysis model which was based upon hydraulic flow routing procedures for surface flow and pipe flow. The Dual-Drainage inundation analysis model can simulate the effect of complex storm drainage system. The developed model was applied to Dorim, catchment. The computed inundated depth and area have good agreement with the observed data during the flood events. The developed model can help the decision support system of flood control authority for redesigning and constructing flood prevention structures and making the potential inundation zone, and establishing flood-mitigation measures.

Comparison on Patterns of Conflicts in the South China Sea and the East China Sea through Analysis on Mechanism of Chinese Gray Zone Strategy (중국의 회색지대전략 메커니즘 분석을 통한 남중국해 및 동중국해 분쟁 양상 비교: 시계열 데이터에 근거한 경험적 연구를 중심으로)

  • Cho, Yongsu
    • Maritime Security
    • /
    • v.1 no.1
    • /
    • pp.273-310
    • /
    • 2020
  • This study aims at empirically analyzing the overall mechanism of the "Gray Zone Strategy", which has begun to be used as one of Chinese major maritime security strategies in maritime conflicts surrounding the South China Sea and East China Sea since early 2010, and comparing the resulting conflict patterns in those reg ions. To this end, I made the following two hypotheses about Chinese gray zone strategy. The hypotheses that I have argued in this study are the first, "The marine gray zone strategy used by China shows different structures of implementation in the South China Sea and the East China Sea, which are major conflict areas.", the second, "Therefore, the patterns of disputes in the South China Sea and the East China Sea also show a difference." In order to examine this, I will classify Chinese gray zone strategy mechanisms multi-dimensionally in large order, 1) conflict trends and frequency of strategy execution, 2) types and strengths of strategy, 3) actors of strategy execution, and 4) response methods of counterparts. So, I tried to collect data related to this based on quantitative modeling to test these. After that, about 10 years of data pertaining to this topic were processed, and a research model was designed with a new categorization and operational definition of gray zone strategies. Based on this, I was able to successfully test all the hypotheses by successfully comparing the comprehensive mechanisms of the gray zone strategy used by China and the conflict patterns between the South China Sea and the East China Sea. In the conclusion, the verified results were rementioned with emphasizing the need to overcome the security vulnerabilities in East Asia that could be caused by China's marine gray zone strategy. This study, which has never been attempted so far, is of great significance in that it clarified the intrinsic structure in which China's gray zone strategy was implemented using empirical case studies, and the correlation between this and maritime conflict patterns was investigated.

  • PDF

The Time and Effect of Hypothermia in Early Stage of the Reversible Cerebral Focal Ischemic Model of Rat (백서의 가역성 뇌허혈 모형에서 저체온의 효과와 적용시기)

  • Choi, Byung-Yon;Jung, Byung-Woo;Song, Kwang-Chul;Park, Jin-Han;Kim, Seong-Ho;Bae, Jang-Ho;Kim, Oh-Lyong;Cho, Soo-Ho;Kim, Seung-Lae
    • Journal of Korean Neurosurgical Society
    • /
    • v.29 no.2
    • /
    • pp.167-179
    • /
    • 2000
  • Objective : We studied to clarify the effective time zone of mild hypothermic neural protection during ischemia and/or reperfusion after middle cerebral artery occlusion. Methods : In a reversible cerebral infarct model which maintained reperfusion of blood flow after middle cerebral artery occlusion for two hours, the size of cerebral infarction, cerebral edema and the extent of neurological deficit were observed and analyzed for comparison between the control and the experimental groups under hypothermia($33.5^{\circ}C$). The temporalis muscle temperature was reduced to $33.5^{\circ}C$ by surface cooling for two hours during middle cerebral artery occlusion for study group I. The following groups applied hypothermia for two-hour periods after reperfusion : group II(0-2 hours), group III(2-4 hours), and group IV(4-6 hours). They were rewarmed to $36.5^{\circ}C$ until sacrified at 2, 4, 6, 12, and 24 hours after reperfusion. Control group was maintained at normothermia without hypothermia. Results : In the experimental groups with hypothermia, the average value of the size of cerebral infarction($mean{\pm}SD$) was $1.97{\pm}1.65%$, which was a remarkable reduction over that of the control, $4.93{\pm}3.79%$. In the control, a progressive increase was shown in the size of infarction from point of reperfusion to 6 hours after reperfusion without further changes in size afterward. Intra-ischemic hypothermia(group I) prevented ischemic injury but did not prevent reperfusion injury. Group II examplified the most neural protective effect in comparison to the control group and group IV(p<0.05). The cortex was more vulnerable to reperfusion injury than the subcortex. Mild hypothermia showed more neural protective effects on the cortex than subcortex. Conclusion : The most appropriate time zone for application of mild hypothermia was defined to be within four hours following reperfusion.

  • PDF

Development and validation of a non-linear k-ε model for flow over a full-scale building

  • Wright, N.G.;Easom, G.J.;Hoxey, R.J.
    • Wind and Structures
    • /
    • v.4 no.3
    • /
    • pp.177-196
    • /
    • 2001
  • At present the most popular turbulence models used for engineering solutions to flow problems are the $k-{\varepsilon}$ and Reynolds stress models. The shortcoming of these models based on the isotropic eddy viscosity concept and Reynolds averaging in flow fields of the type found in the field of Wind Engineering are well documented. In view of these shortcomings this paper presents the implementation of a non-linear model and its evaluation for flow around a building. Tests were undertaken using the classical bluff body shape, a surface mounted cube, with orientations both normal and skewed at $45^{\circ}$ to the incident wind. Full-scale investigations have been undertaken at the Silsoe Research Institute with a 6 m surface mounted cube and a fetch of roughness height equal to 0.01 m. All tests were originally undertaken for a number of turbulence models including the standard, RNG and MMK $k-{\varepsilon}$ models and the differential stress model. The sensitivity of the CFD results to a number of solver parameters was tested. The accuracy of the turbulence model used was deduced by comparison to the full-scale predicted roof and wake recirculation zone lengths. Mean values of the predicted pressure coefficients were used to further validate the turbulence models. Preliminary comparisons have also been made with available published experimental and large eddy simulation data. Initial investigations suggested that a suitable turbulence model should be able to model the anisotropy of turbulent flow such as the Reynolds stress model whilst maintaining the ease of use and computational stability of the two equations models. Therefore development work concentrated on non-linear quadratic and cubic expansions of the Boussinesq eddy viscosity assumption. Comparisons of these with models based on an isotropic assumption are presented along with comparisons with measured data.

Analytical Model of Beam-Column Joint for Inelastic Behavior Under Various Loading History (철근콘크리트 보-기둥 접합부 해석모델)

  • 유영찬;서수연;이원호;이리형
    • Magazine of the Korea Concrete Institute
    • /
    • v.6 no.1
    • /
    • pp.120-130
    • /
    • 1994
  • The purpose of this study is to propose the analytical model for the hysteretic behavior of Reinforced Concrete bearn-column joints under various loading history. Discrete line elernents , YVith inelastic rotational spring was adopted to consider the movement of plastic hinging zone influenced by the details of longitudinal reinforcements. Also hysteretic model was constructed by excluding such variables which can not be utilized in dynamic analysis of Reinforced Concrete. structure that it will be adoptable in two-dimensional inelastic frame ardysis with 6-DOF. From the analysis of previous test results, it was found that stiffness deterioration caused by inelastic hysteretic loadings can be predicted by the functron of basic pinching coefficients, ductility ratio.and yield strength ratio of members. Strength degradation coefficients were newly proposed to explain the difference of inelastic behavior of members caused by spacing ratio of transverse steel and sectlon aspect ratio. The energy dissipation capacities calculated using the analytical model proposed in thls paper show a good agreements w~lh test results by an error of 10~20%.

Numerical Modeling of Free Surface Flow over a Broad-Crested Rectangular Weir (사각형 광정위어를 통과하는 자유수면 흐름 수치모의)

  • Paik, Joongcheol;Lee, Nam Joo
    • Journal of Korea Water Resources Association
    • /
    • v.48 no.4
    • /
    • pp.281-290
    • /
    • 2015
  • Numerical simulations of free surface flow over a broad-crested rectangular weir are conducted by using the volume of fraction (VOF) method and three different turbulence models, the k-${\varepsilon}$, RNG k-${\omega}$ and k-${\omega}$ SST models. The governing equations are solved by a second-order accurate finite volume method and the grid sensitivity study of solutions is carried out. The numerical results are evaluated by comparing the solutions with experimental and numerical results of Kirkgoz et al. (2008) and some non-dimensionalized experimental results obtained by Moss (1972) and Zachoval et al. (2012). The results show that the present numerical model can reasonably reproduce the experimental results, while three turbulent models yield different numerical predictions of two distinct zones of flow separation, the first zone is in front of the upstream edge of the weir and the second is created immediately behind the upstream edge of the weir where the flow is separated to form the separation bubble. The standard k-${\varepsilon}$ model appears to significantly underestimate the size of both separation zones and the k-${\omega}$ SST model slightly over-estimates the first separation zone in front of the weir. The RNG k-${\varepsilon}$ model predicts both separation zones in overall good agreement with the experimental measurement, while the k-${\omega}$ SST model yields the best numerical prediction of separation bubble at the upstream edge of the weir.