• Title/Summary/Keyword: Two-Phase Flow Pattern

Search Result 143, Processing Time 0.026 seconds

Flow Pattern Identification of Vertical Upward Two-Phase Flow Using the Attractor-Density-Map Analysis of the Void Fraction Signal in the Nonlinear Phase Space (비선형 위상공간에서의 기포 분율 신호의 끌개밀도분식을 이용한 수직 상향 이상유동의 유동패턴분류)

  • Kim, Nam-Seok;Lee, Jae-Young
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.11
    • /
    • pp.1398-1406
    • /
    • 2004
  • The nonlinear signals from an impedance meter for the area average void fraction in two-phase flow have been analyzed to construct a phase space trajectory. The pseudo phase space was constructed with the time delay and proper dimensions. The time delay and the embedding dimension were chosen by the average mutual information and by the false nearest neighborhood, respectively. The attractor-density-map of projected states was used to produce the two dimensional probability distribution functions (2D-PDF). Since the developed 2D-PDF showed clear distinction of the flow patterns, the flow regime identification was made with three rules and with the 2D-PDF. Also, the transition criteria of Mishima-Ishii agree well with the present results.

A Study on Pressure Drop Characteristics of Refrigerants in Horizontal Flow Boiling

  • Lim, Tae-Woo;Han, Kyu-Il
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.5
    • /
    • pp.758-765
    • /
    • 2003
  • An experimental investigation on the flow pattern and pressure drop was carried out for both an adiabatic and a diabatic two-phase flow in a horizontal tube with pure refrigerants R134a and R123 and their mixtures as test fluids. The observed flow patterns were compared to the flow pattern map of Kattan et al., which predicted well the present data over the entire regions of mass velocity in this study. The measured frictional pressure drop in the adiabatic experiments increased with an increase in vapor quality and mass velocity These data were compared to various correlations proposed in the past for the frictional pressure drop. The Chisholm correlation underpredicted the present data both for pure fluids and their mixtures in the entire mass velocity range of 150 to 600 kg/m$^2$s covered in the measurements, white the Friedel correlation was found to overpredict the present data in the stratified and stratified-wavy flow region, and to underpredict in the annular flow region.

Experimental study on two-phase flow behavior inside a vertical tube evaporator under flashing phenomenon (후래시 현상을 수반하는 수직증발관내에서의 2상유동에 관한 실험적 연구)

  • 이상용;송시홍;이상호
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.4
    • /
    • pp.833-846
    • /
    • 1988
  • Two-phase flow heat transfer phenomena with flash evaporation inside a vertical tube were studied experimentally. Void fractions were measured using electrical probes, and the flow patterns were identified from the output voltage signal itself. The flow pattern as well as the beat transfer rates were changing along the axial distance from the tube inlet with the system pressure. As the pressure inside the tube decreases with fixed inlet temperature, the overall heat transfer coefficient through the tube wall and the boiling heat transfer coefficient inside the tube increase whereas the condensation heat transfer coefficient outside the tube decreases. The boiling heat transfer coefficient inside the tube measured by the experiments appeared to be somewhat larger than the value obtained from the Chen's correlation. Also, the flow patterns identified from present experiments are at the larger quality region of the low pattern map based on the transition criteria of Mishima and Ishii. This may be due to the non-equilibrium flashing phenomenon occurred at the nozzle exit and the tube inlet ; this also implies that the flow pattern of the two-phase flow depends strongly on the inlet conditions.

Development of a Current-Type Electromagnetic Flowmeter to Obtain the Liquid Mean Velocity in Two-Phase Slug Flow (슬러그류 액상속도 측정용 전류형식 전자기유량계 개발)

  • Kang, Deok-Hong;Ahn, Yeh-Chan;Kim, Jong-Rok;Oh, Byung-Do;Kim, Moo-Hwan
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1951-1956
    • /
    • 2004
  • The transient nature and complex flow geometries of two-phase gas-liquid flows cause fundamental difficulties when measuring flow velocity using an electromagnetic flowmeter. Recently, a current-sensing flowmeter was introduced to obtain measurements with high temporal resolution (Ahn et $al.^{(1)}$). In this study, current-sensing flowmeter theory was applied to measure the fast velocity transients in slug flows. To do this, the velocity fields of axisymmetric gas-liquid slug flow in a vertical pipe were obtained using Volume-of-Fluid (VOF) method and the virtual potential distributions for the electrodes of finite size were also computed using the finite volume method for the simulated slug flow. The output signal prediction for slug flow was carried out from the velocity and virtual potential (or weight function) fields. The flowmeter was numerically calibrated to obtain the cross-sectional liquid mean velocity at an electrode plane from the predicted output signal. Two calibration parameters are required for this procedure: a flow pattern coefficient and a localization parameter. The flow pattern coefficient was defined by the ratio of the liquid resistance between the electrodes for two-phase flow with respect to that for single-phase flow, and the localization parameter was introduced to avoid errors in the flowmeter readings caused by liquid acceleration or deceleration around the electrodes. These parameters were also calculated from the computed velocity and virtual potential fields. The results can be used to obtain the liquid mean velocity from the slug flow signal measured by a current-sensing flowmeter.

  • PDF

Numerical Signal Prediction and Calibration Using the Theory of a Current-Type Electromagnetic Flowmeter for Two-Phase Slug Flow (슬러그 2상유동에서 전류형식 전자기유량계 수치적 신호예측 및 보정)

  • Ahn Yeh-Chan;Oh Byung Do;Kim Jong-Rok;Kim Moo Hwan;Kang Deok-Hong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.6 s.237
    • /
    • pp.671-686
    • /
    • 2005
  • The transient nature and complex geometries of two-phase gas-liquid flows cause fundamental difficulties when measuring flow velocity using an electromagnetic flowmeter. Recently, a current-sensing flowmeter was introduced to obtain measurements with high temporal resolution (Ahn et al.). In this study, current-sensing flowmeter theory was applied to measure the fast velocity transients in slug flows. The velocity fields of axisymmetric gas-liquid slug flow in a vertical pipe were obtained using Volume-of-Fluid (VOF) method, and the virtual potential distributions for the electrodes of finite size were also computed using the finite volume method for simulating slug flow. The output signal prediction for slug flow was carried out from the velocity and virtual potential (or weight function) fields. The flowmeter was numerically calibrated to obtain the cross-sectional liquid mean velocity at an electrode plane from the predicted output signal. Two calibration parameters are proposed for this procedure: a flow pattern coefficient and a localization parameter. The flow pattern coefficient was defined by the ratio of the liquid resistance between the electrodes for two-phase flow with respect to that for single-phase flow, and the localization parameter was introduced to avoid errors in the flowmeter readings caused by liquid acceleration or deceleration around the electrodes. These parameters were also calculated from the computed velocity and virtual potential fields. The results can be used to obtain the liquid mean velocity from the slug flow signal measured by a current-sensing flowmeter.

Air Influx Characteristics of Turbo Pumps (공기 유입시의 터보펌프 특성)

  • Kim, You-Taek;Nam, Cheong-Do;Kang, Ho-Keun;Lee, Young-Ho
    • 유체기계공업학회:학술대회논문집
    • /
    • 2004.12a
    • /
    • pp.43-48
    • /
    • 2004
  • A screw-type centrifugal pump was manufactured to carry solids primarily and its impeller has a wide flow passage. However, the effect of flow passage shape on delay of the choke due to entrained air has not been clarified yet. Moreover, because its impeller has a particular shape, only few studies have tried to clarify the pump performance and details of internal flow pattern of that pump. For that reason, we carried out the pump performance experiment under air-water two-phase flow condition with different impeller tip clearances, pump rotational speeds and void fractions by using a small screw-type centrifugal pump designed to acquire basic data. In a general centrifugal pump, it was reported that loss of pump head from single-phase flow to the choke due to air entrainment new the best efficiency point was large. However, the loss near the best efficient point in a screw-type centrifugal pump became less than that in a general centrifugal pump.

  • PDF

A Study on the Characteristics of Flow with Polymer Additives (고분자물질 첨가에 의한 유동특성에 관한 연구)

  • 차경옥;김재근
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.4 no.3
    • /
    • pp.176-186
    • /
    • 1996
  • The phenomena of drag reduction using small quantities of a liner macromolecules has attracted the attention of many experimental investigations. On the other hand drag reduction in two phase flow can be applied to the transport of crude oil, phase change system such as chemical reactor, pool and boiling flow, and to flow with cavitation which occurs pump impellers. But the research on dragreduction in two phase flow is not sufficient. The purpose of the present work is to evaluate the drag reduction by measuring pressure drop, void fraction, mean liquid velocity and turbulent intensity whether polymer additives a horizontal single and two phase system or not. Flow pattern of air-water two phase flow was classified by electrical conductivity probe signal. Velocities and turbulent intensities of signal were measured simultaneously with a Hot-film anemometer.

  • PDF

Characteristics of a Small Screw-type Centrifugal Pump Operating in Air-Water Two-Phase Flow (소형 스크류식 원심펌프의 기액 이상류 특성)

  • Kim, You-Taek;Tanaka, Kazuhiro;Lee, Young-Ho
    • The KSFM Journal of Fluid Machinery
    • /
    • v.2 no.4 s.5
    • /
    • pp.9-15
    • /
    • 1999
  • A screw-type centrifugal pump was manufactured to carry primarily solids and its impeller had a wide flow passage. However, there was an effect on the flow passage shape on delay of the choke due to entrained air not being clarified yet. Moreover, because its impeller has a particular shape, only few studies have tried to clarify the pump performance and details of internal flow pattern of that pump. For this reason, we carried out the pump performance experiment under air-water two-phase flow condition with different impeller tip clearances, pump rotational speeds and void fractions by using a small screw-type centrifugal pump designed to acquire basic data. In a general centrifugal pump, it was reported that there was a loss of pump head from single-phase flow to the choke due to air entrainment near the best efficiency point being large. However, the loss near the best efficient point in a screw-type centrifugal pump became less than that in a general centrifugal pump.

  • PDF

Identification of Two-Phase Flow Patterns in a Inclined Duct Based upon a Statistical Analysis of Instantaneous Pressure Drop (순간압력강하치의 통계적 해석을 통한 경사관내 2상유동양식의 판별)

  • Lee, S.C.;Lee, J.P.;Kim, J.Y.
    • The Magazine of the Society of Air-Conditioning and Refrigerating Engineers of Korea
    • /
    • v.17 no.5
    • /
    • pp.590-597
    • /
    • 1988
  • Characteristics of flow regime transitions in inclined upwards gas-liquid two-phase flow have been investigated based upon a statistical analysis of instantaneous pressure drop curves through an orifice. The probability density functions of the curves indicate distinct patterns depending upon two-phase flow regime, which are very similar to those of horizontal two-phase. The dimensionless intensity of fluctuations of the pressure drops sharply change as the flow transitions such as plug-slug, pseudo slug-slug and annular-slug take place. The effects of inclination angle on the flow regime transitions have been also investigated. The results show that the method to identify the flow pattern based upon the statistical analysis of instantaneous pressure drops is suitable for inclined flow as well as horizontal flow.

  • PDF

Improved Convective Heat Transfer Correlations for Two-Phase Two-Component Pipe Flow

  • Kim, Dongwoo
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.3
    • /
    • pp.403-422
    • /
    • 2002
  • In this study, six two-phase nonboiling heat transfer correlations obtained from the recommendations of our previous work were assessed. These correlations were modified using seven extensive sets of two-phase flow experimental data available from the literature, for vertical and horizontal tubes and different flow patterns and fluids. A total of 524 data points from five available experimental studies (which included the seven sets of data) were used for improvement of the six identified correlations. Based on the tabulated and graphical results of the comparisons between the predictions of the modified heat transfer correlations and the available experimental data, appropriate improved correlations for different flow patterns, tube orientations, and liquid-gas combinations were recommended.