• 제목/요약/키워드: Two-Dimensional Cutting

검색결과 109건 처리시간 0.025초

0-1 혼합정수계획법을 이용한 LCD 패널 절단 문제 최적화 (Optimization of LCD Panel Cutting Problem Using 0-1 Mixed Integer Programming)

  • 김기동;박현지;심윤섭;전태보
    • 센서학회지
    • /
    • 제26권4호
    • /
    • pp.274-279
    • /
    • 2017
  • LCD(Liquid Crystal Display) panel cutting problem is a sort of two dimensional cutting stock problem. A cutting stock problem is problem that it minimizes the loss of the stock when a stock is cut into various parts. In the most research of the two dimensional cutting stock problem, it is supposed that the relative angle of a stock and parts is not important. Usually the angle is regarded as horizontal or perpendicular. In the manufacturing of polarizing film of LCD, the relative angle should be maintained at some specific angle because of the physical and/or chemical characteristics of raw material. We propose a mathematical model for solving this problem, a two-dimensional non-Guillotine cutting stock problem that is restricted by an arranged angle. Some example problems are solved by the C++ program using ILOG CPLEX classes. We could get the verification and validation of the suggested model based on the solutions.

무제한 2차원 절단문제에 대해 개선된 최적-우선 분지한계 해법 (An Improved Best-First Branch and Bound Algorithm for Unconstrained Two-Dimensional Cutting Problems)

  • 윤기섭;방성규;강맹규
    • 한국경영과학회지
    • /
    • 제30권4호
    • /
    • pp.61-70
    • /
    • 2005
  • In this Paper, we develop an improved branch and bound algorithm for the (un)weighted unconstrained two-dimensional cutting problem. In the proposed algorithm, we improve the branching strategies of the existing exact algorithm and reduce the size of problem by removing the dominated pieces from the problem. We apply the newly Proposed definition of dominated cutting pattern and it can reduce the number of nodes that must be searched during the algorithm procedure. The efficiency of the proposed algorithm is presented through comparison with the exact algorithm known as the most efficient.

진동절삭을 이용한 고정도 미세가공 (High-precision Micro-machining using Vibration Cutting)

  • 손성민;임한석;안중환
    • 한국정밀공학회지
    • /
    • 제16권3호통권96호
    • /
    • pp.72-77
    • /
    • 1999
  • This paper presents 2-dimensional vibration cutting increases dynamic stiffness of tool support and improves the quality of machined surface in micro-machining. 2-dimensional vibration cutting is generated by two piezo actuators arranged orthogonally. A sine-type voltage is input to one actuator and a phase-shifted sine-type voltage is input the other. Then the vibration device actuates the tool in a 2-D elliptical motion with pulsed cutting force. It is a characteristic of 2-D vibration cutting that some negative thrust force occurs as the direction of friction on a tool rake surface is reversed. It helps not only chip flow smoothly and continuously but also cutting force be reduced. The quality of machined surface by 2-D vibration cutting depends on such parameters as vibration amplitude, frequency, cutting speed, depth of cut, etc. Compared to conventional cutting through tool path simulation and experiments under several conditions, the 2-D vibration cutting is verified to bring forth a great decrease of cutting forces, much better surface roughness and moreover much less burr.

  • PDF

Nutating 헤드 타입 5축 CNC 레이저 절단기용 동작 시뮬레이터 (Cutting Motion Simulator for Nutating Head Type S-axis CNC Laser Cutting Machine)

  • 강재관
    • 산업경영시스템학회지
    • /
    • 제34권3호
    • /
    • pp.35-40
    • /
    • 2011
  • 5-axis laser cutting has great advantages when it is applied to three dimensional machining requiring high cutting quality. For developing 5-axis CNC laser cutting systems, however, many problems such as rotating a laser head or a working table, 5-axis servo-control mechanism, tool path generation and post-processing, and collision avoidance between a laser head and a work-piece should be solved. In this paper, we deal with developing a motion simulator for 5-axis laser cutting machine with a nutating cutting head whose rotational axis is in an inclined plane. Two essential modules such as post-processor and cutting motion simulator was developed based on a commercial 3D CAD of UG-NX. The developed system was applied to three dimensional cutting products and showed the validity of the developed methods.

비가중 무제한 2차원 절단문제에 대한 최적-우선 분지한계 해법 (A Best-First Branch and Bound Algorithm for Unweighted Unconstrained Two-Dimensional Cutting Problems)

  • 윤기섭;윤희권;강맹규
    • 산업경영시스템학회지
    • /
    • 제32권1호
    • /
    • pp.79-84
    • /
    • 2009
  • In this paper, a best-first branch and bound algorithm based upon the bottom-up approach for the unweighted unconstrained two-dimensional cutting problem is proposed to find the optimal solution to the problem. The algorithm uses simple and effective methods to prevent constructing duplicated patterns and reduces the searching space by dividing the branched node set. It also uses a efficient bounding strategy to fathom the set of patterns. Computational results are compared with veil-known exact algorithms and demonstrate the efficiency of the proposed algorithm.

효율적인 2단계 길로틴 평면절단 방법 (An efficient method on two-phased guillotine cutting stock)

  • 김상열;박순달
    • 산업공학
    • /
    • 제8권2호
    • /
    • pp.151-159
    • /
    • 1995
  • Two-dimensional cutting stock problem is to find a waste-minimizing method of cutting a single rectangular plane into a number of smaller pieces of known dimensions. In practice, besides wastes, setup cost taken during adjusting is of an important concern. We suggest 2-phased guillotine cutting method as a solution to the problem which minimize wastes and setup costs. Also, in order to reduce the computing time we apply techniques of discretization, cutoff, median. Experimental results show good performance of our algorithm.

  • PDF

초경톱과 숫돌톱의 성능에 관한 연구 (A Study on the Performance of Hardmetal with Whetstone Saw)

  • 이철구;이우람;김진영
    • 한국생산제조학회지
    • /
    • 제18권5호
    • /
    • pp.498-506
    • /
    • 2009
  • An experimental study was performed to select cutting parameters for better quality-products in hard metals such as steels. Usually, a hard metal can be cut with a rotary cutting knife and the process provides a good cutting quality result. However, the cutting machine is much sensitive in cutting conditions because of its complicated mechanism. By this reason, careful processing conditions must be taken to improve the quality of the products. This experimental study for better quality products with a rotary cutting knife was carried out with two main factors; cutting speeds and cutting and pooling forces. A two-dimensional profile measuring instrument is used to evaluate its cutting faces and the effects of processing factors are analyzed by a commercial software.

  • PDF

2차원 길로틴 절단문제를 위한 새로운 상한 (A New Upper Bound for Two-Dimensional Guillotine Cutting Problem)

  • 윤기섭;지영근;강맹규
    • 산업경영시스템학회지
    • /
    • 제24권62호
    • /
    • pp.21-32
    • /
    • 2001
  • The two-dimensional guillotine cutting problem is to maximize sum of piece profits that cut from one stock rectangle and widely applied in the industry. The branch-and-bound method for this problem uses complementarily several upper bounds(the Gilmore and Gomoryp[8]'s two-dimensional knapsack function and the Hifi and Zissimopoulos[10]'s method using one-dimensional knapsack problem, etc) to reduce the number of searched nodes. These upper bounds has a shortcoming that does not consider the bound and layout of pieces simultaneously. In this paper, we propose an efficient upper bound which can complement the shortcoming of existing upper bounds. The proposed upper bound needs less memory spaces and computing time. Computational results show that the proposed upper bound significantly contribute to reduce the computational amount of time and number of searched nodes in tree.

  • PDF

볼엔드밀 가공의 칩두께 모델 해석 (Analysis of Chip Thickness Model in Ball-end Milling)

  • 심기중;문상돈
    • 한국공작기계학회논문집
    • /
    • 제15권2호
    • /
    • pp.73-80
    • /
    • 2006
  • This paper describes a analysis on the chip thickness model required for cutting force simulation in ball-end milling. In milling, cutting forces are obtained by multiplying chip area to specific cutting forces in each cutting instance. Specific cutting forces are one of the important factors for cutting force predication and have unique value according to workpiece materials. Chip area in two dimensional cutting is simply calculated using depth of cut and feed, but not simply obtained in three dimensional cutting such as milling due to complex cutting mechanics. In ball-end milling, machining is almost performed in the ball part of the cutter and tool radius is varied along contact point of the cutter and workpiece. In result, the cutting speed and the effective helix angle are changed according to length from the tool tip. In this study, for chip thickness model analysis, tool and chip geometry are analyzed and then the definition of chip thickness and estimation method are described. The resulted of analysis are verified by compared with geometrical simulation and other research. The proposed chip thickness model is more precise.

드릴링 공정의 열거동 해석과 관측기를 이용한 온도 추정법 (Analysis of Thermal Behavior and Temperature Estimation by using an Observer in Drilling Processes)

  • 김태훈;정성종
    • 대한기계학회논문집A
    • /
    • 제27권9호
    • /
    • pp.1499-1507
    • /
    • 2003
  • Physical importance of cutting temperatures has long been recognized. Cutting temperatures have strongly influenced both the tool life and the metallurgical state of machined surfaces. Temperatures in drilling processes are particularly important, because chips remain in contact with the tool for a relatively long time in a hole. Tool temperatures tend to be higher in drilling processes than in other in machining processes. This paper concerns with modeling of thermal behaviors in drilling processes as well as estimation of the cutting temperature distribution based on remote temperature measurements. One- and two-dimensional estimation problems are proposed to analyze drilling temperatures. The proposed thermal models are compared with solutions of finite element methods. Observer algorithms are developed to solve inverse heat conduction problems. In order to apply the estimation of cutting temperatures, approximation methods are proposed by using the solution of the finite element method. In two-dimensional analysis, a moving heat source according to feedrate of the drilling process is regarded as a fixed heat source with respect to the drilling location. Simulation results confirm the application of the proposed methods.