• 제목/요약/키워드: Two-Dimension materials

검색결과 137건 처리시간 0.028초

Comparison of immediate complete denture, tooth and implant-supported overdenture on vertical dimension and muscle activity

  • Shah, Farhan Khalid;Gebreel, Ashraf;Elshokouki, Ali Hamed;Habib, Ahmed Ali;Porwal, Amit
    • The Journal of Advanced Prosthodontics
    • /
    • 제4권2호
    • /
    • pp.61-71
    • /
    • 2012
  • PURPOSE. To compare the changes in the occlusal vertical dimension, activity of masseter muscles and biting force after insertion of immediate denture constructed with conventional, tooth-supported and Implant-supported immediate mandibular complete denture. MATERIALS AND METHODS. Patients were selected and treatment was carried out with all the three different concepts i.e, immediate denture constructed with conventional (Group A), tooth-supported (Group B) and Implant-supported (Group C) immediate mandibular complete dentures. Parameters of evaluation and comparison were occlusal vertical dimension measured by radiograph (at three different time intervals), Masseter muscle electromyographic (EMG) measurement by EMG analysis (at three different positions of jaws) and bite force measured by force transducer (at two different time intervals). The obtained data were statistically analyzed by using ANOVA-F test at 5% level of significance. If the F test was significant, Least Significant Difference test was performed to test further significant differences between variables. RESULTS. Comparison between mean differences in occlusal vertical dimension for tested groups showed that it was only statistically significant at 1 year after immediate dentures insertion. Comparison between mean differences in wavelet packet coefficients of the electromyographic signals of masseter muscles for tested groups was not significant at rest position, but significant at initial contact position and maximum voluntary clench position. Comparison between mean differences in maximum biting force for tested groups was not statistically significant at 5% level of significance. CONCLUSION. Immediate complete overdentures whether tooth or implant supported prosthesis is recommended than totally mucosal supported prosthesis.

Effect of polymerization method and fabrication method on occlusal vertical dimension and occlusal contacts of complete-arch prosthesis

  • Lima, Ana Paula Barbosa;Vitti, Rafael Pino;Amaral, Marina;Neves, Ana Christina Claro;Concilio, Lais Regiane da Silva
    • The Journal of Advanced Prosthodontics
    • /
    • 제10권2호
    • /
    • pp.122-127
    • /
    • 2018
  • PURPOSE. This study evaluated the dimensional stability of a complete-arch prosthesis processed by conventional method in water bath or microwave energy and polymerized by two different curing cycles. MATERIALS AND METHODS. Forty maxillary complete-arch prostheses were randomly divided into four groups (n = 10): MW1 - acrylic resin cured by one microwave cycle; MW2 - acrylic resin cured by two microwave cycles: WB1 - conventional acrylic resin polymerized using one curing cycle in a water bath; WB2 - conventional acrylic resin polymerized using two curing cycles in a water bath. For evaluation of dimensional stability, occlusal vertical dimension (OVD) and area of contact points were measured in two different measurement times: before and after the polymerization method. A digital caliper was used for OVD measurement. Occlusal contact registration strips were used between maxillary and mandibular dentures to measure the contact points. The images were measured using the software IpWin32, and the differences before and after the polymerization methods were calculated. The data were statistically analyzed using the one-way ANOVA and Tukey test (${\alpha}=.05$). RESULTS. The results demonstrated significant statistical differences for OVD between different measurement times for all groups. MW1 presented the highest OVD values, while WB2 had the lowest OVD values (P<.05). No statistical differences were found for area of contact points among the groups (P=.7150). CONCLUSION. The conventional acrylic resin polymerized using two curing cycles in a water bath led to less difference in OVD of complete-arch prosthesis.

압전소자를 이용한 케이블의 손상평가 (Damage Estimation of Cables using PZT)

  • 박강근;김이성;김화중
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2008년도 추계 학술논문 발표대회
    • /
    • pp.235-239
    • /
    • 2008
  • Cable systems are a construction of elements carrying only tension and no compression or bending in membrane structure. Tensile membrane structures are most often used as roofs as they can economically and attractively span large distances. But cable systems have weaknesses to vibration by earthquake, wind and vehicle loads. Damage detection of cable systems by using existing safety diagnosis is difficult to detect the characteristic change of overall structural action. If cable snaps are occurred to cable release and tear in tension structures, these are set up a vibration. So, we used piezo-electric materials, and The principle of operation of a piezoelectric sensor is that a physical dimension, transformed into a force, acts on two opposing faces of the sensing element. In this study, the development on test method of cable system is proposed and tested by tensile strength using piezo-electric materials.

  • PDF

Overview of High Performance 3D-WLP

  • Kim, Eun-Kyung
    • 한국재료학회지
    • /
    • 제17권7호
    • /
    • pp.347-351
    • /
    • 2007
  • Vertical interconnect technology called 3D stacking has been a major focus of the next generation of IC industries. 3D stacked devices in the vertical dimension give several important advantages over conventional two-dimensional scaling. The most eminent advantage is its performance improvement. Vertical device stacking enhances a performance such as inter-die bandwidth improvements, RC delay mitigation and geometrical routing and placement advantages. At present memory stacking options are of great interest to many industries and research institutes. However, these options are more focused on a form factor reduction rather than the high performance improvements. In order to improve a stacked device performance significantly vertical interconnect technology with wafer level stacking needs to be much more progressed with reduction in inter-wafer pitch and increases in the number of stacked layers. Even though 3D wafer level stacking technology offers many opportunities both in the short term and long term, the full performance benefits of 3D wafer level stacking require technological developments beyond simply the wafer stacking technology itself.

Self-assembly of Si-containing block copolymers for next-generation nanofabrication

  • 정연식
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제40회 동계학술대회 초록집
    • /
    • pp.22-23
    • /
    • 2011
  • As device dimensions shrink, it is increasingly important to develop fabrication methods that can create sub-15 nm features of regular or arbitrary geometry in a rapid, parallel, and efficient process. This talk will discuss approaches based on self-assembling hybrid polymers containing Si. The thin films of those materials systems can generate well-ordered periodic arrays of dots or lines. For achieving, long-range ordering, it is helpful to use lithographically-defined templates, which are in general much larger than the length-scale of self-assembled nanostructures. For example, the self-assembly of polymer nanostructures can easily be templated using an array of nanoscale topographical elements that act as guiding templates or surrogates for one of two microdomains. The solvent-vapor-induced tunability of pattern dimension and morphology will be discussed as well. Those material systems can excellently serve for high-precision self-assembly that can provide good resolution, reliability, and controllability and be considered as an option for a future nanomanufacturing technology.

  • PDF

인상채득 후 시간경과와 반복주입에 따른 부가중합형 실리콘 인상재의 체적변화 (Evaluation of the Time and Pouring Frequency Dependent Dimensional Stability of Additional Silicone Impression Materials.)

  • 최미라
    • 구강회복응용과학지
    • /
    • 제23권3호
    • /
    • pp.239-248
    • /
    • 2007
  • The accuracy and dimensional stability of rubber impression materials are very important for the fitness of the final restoration. The purpose of this investigation was to evaluate the effects of the storage time and pouring frequency of the additional silicone materials on dimensional stability. Total 30 impressions were made of tooth prepared single crown. The dies had 1 buccolingual, 1 mesiodistal and 1 occlusogingival lines. Two additional silicone materials(examixfine, aquasil) were included. 15 specimens were made of each impression material and poured by type IV stone over times(1hour, 24hours, 72hours) after mixing. 5 impressions poured after 1 hour were used for second pouring after 24hours and third pouring after 72hours. The same examiner measured each specimen 3 times after lazer scanning. All statistical tests were performed with the level of significance set at 0.05. The results indicated that significant difference at any measuring point of stone dies except the buccolingual and mesiodistal lines of the specimen made at 1hour after mixing with examixfine when measurements at 1hour, 24hours and 72hours were campared. There were significant difference between two impression materials and at every measuring point of stone dies made at second and third pouring. The length of measuring point increased significantly as time passed by and increase of the pouring frequency. However, this results are clinically acceptable except the dies of the third pouring. Under the conditions of this study, the shrinkage rate of the additional silicone rubber impression materials significantly increased as time passed by and increase of the pouring frequency.

배관의 Ice Plugging에 의하여 유발되는 열응력의 실험적 규명 (Experimental Evaluation on the Thermal Stress Due to Ice Plugging of Tubes in Nuclear Power Plant)

  • 박영돈;이민우;구태완;김귀순;강범수
    • 대한기계학회논문집A
    • /
    • 제23권7호
    • /
    • pp.1094-1103
    • /
    • 1999
  • Ice-plugging of tube in nuclear power plant has been widely used for the purpose of preventing flow of the tube temporarily like a valve. Most common plugging method employs Liquid Nitrogen Gas of $-196^{\circ}C$. According to the change of tube materials and its dimension, the thermal stress caused from the application of the frozen gas can be varied. In this research, a series of experiments have been carried out to inspect the effect of tube geometry on thermal stresses induced due to ice-plugging. Two typical dimension of stainless and mild steels of 3 and 6 inch diameters were used for the experiments. Each critical spots were checked using strain rosette gages. Another inspection was made on the pressure and temperature of the fluid. It is shown that significant thermal stress level which can cause plastic deformation of failure has not been noticed in this series of experiments.

A fractal fracture model and application to concrete with different aggregate sizes and loading rates

  • Chang, Kug Kwan;Xi, Yunping;Roh, Y.S.
    • Structural Engineering and Mechanics
    • /
    • 제23권2호
    • /
    • pp.147-161
    • /
    • 2006
  • Recent developments in fractal theory suggest that fractal may provide a more realistic representation of characteristics of cementitious materials. In this paper, the roughness of fracture surfaces in cementitious material has been characterized by fractal theory. A systematic experimental investigation was carried out to examine the dependency of fracture parameters on the aggregate sizes as well as the loading rates. Three maximum aggregate sizes (4.76 mm, 12.7 mm, and 19.1 mm) and two loading rates (slow and fast loading rate) were used. A total of 25 compression tests and 25 tension tests were performed. All fracture parameters exhibited an increase, to varying degrees, when aggregates were added to the mortar matrix. The fracture surfaces of the specimens were digitized and analyzed. Results of the fractal analysis suggested that concrete fracture surfaces exhibit fractal characteristics, and the fractal geometry provide a useful tool for characterizing nonlinear fracture behavior of concrete. Fractal dimension D was monotonically increased as maximum aggregate sizes increase. A new fractal fracture model was developed which considers the size and shape of aggregate, and the crack paths in the constituent phases. Detailed analyses were given for four different types of fracture paths. The fractal fracture model can estimate fractal dimension for multiphase composites.

아동의 의복과 체형이 인상형성에 미치는 영향(제2보) -체형에 따른 의복변인의 영향을 중심으로- (The Effect of Garment Formality, Yin-Yang Level , and Body Type on Impression Formation (Part II))

  • 이미숙;김재숙
    • 한국의류학회지
    • /
    • 제21권4호
    • /
    • pp.718-726
    • /
    • 1997
  • The purpose of the study was to investigate the interaction effect of garment formality, Yin -Yang level, and body type of children on impression formation. The experimental materials developed for the study were a set of stimuli (8 color photographs) and a response scale (34 bipolar adjectives) and the subjects were 267 elementary school teachers in Taejon area who were responsible for the first grade students. Results were as follows; The 3 independent variables showed significant effects on impression of the 4 factors (sociability, potency, dynamics, cooperation) of impression. Since body type had interaction effects with garment formality and subject's gender, the two body types were separately analyzed. For the normal body type, only the garment formality affected on impression of cooperation factor But for the large body type, garment formality affected on impression of potency dimension, garment Yin-Yang level affected on social and dynamics dimension, and subject's gender affected on social and cooperation dimensions. The body type was the most salient variables and clothing effects for the large body type was significantly different for the normal body type. It is concluded that the results support the cognitive categorization theory on impression formation.

  • PDF

노출 시간과 영상 해상도가 프랙탈 차원값에 미치는 영향 (Effect of exposure time and image resolution on fractal dimension)

  • 안병모;허민석;이승표;이삼선;최순철;박태원;김종대
    • Imaging Science in Dentistry
    • /
    • 제32권2호
    • /
    • pp.75-79
    • /
    • 2002
  • Purpose : To evaluate the effect of exposure time and image resolution on fractal dimension calculations for determining the optimal range of these two variances. Materials and Methods : Thirty-one radiographs of the mandibular angle area of sixteen human dry mandibles were taken at different exposure times (0.01, 0.08, 0.16, 0.25, 0.40, 0.64, and 0.80 s). Each radiograph was digitized at 1200 dpi, 8 bit, 256 gray level using a film scanner. We selected an Region of Interest (ROI) that corresponded to the same region as in each radiograph, but the resolution of ROI was degraded to 1000, 800, 600, 500, 400, 300, 200, and 100 dpi. The fractal dimension was calculated by using the tile-counting method for each image, and the calculated values were then compared statistically. Results: As the exposure time and the image resolution increased, the mean value of the fractal dimension decreased, except the case where exposure time was set at 0.01 seconds (α = 0.05). The exposure time and image resolution affected the fractal dimension by interaction (p<0.001). When the exposure time was set to either 0.64 seconds or 0.80 seconds, the resulting fractal dimensions were lower, irrespective of image resolution, than at shorter exposure times (α = 0.05). The optimal range for exposure time and resolution was determined to be 0.08- 0.40 seconds and from 400-1000 dpi, respectively. Conclusion : Adequate exposure time and image resolution is essential for acquiring the fractal dimension using tile-counting method for evaluation of the mandible.

  • PDF