• Title/Summary/Keyword: Two-Degrees-of-Freedom

Search Result 447, Processing Time 0.025 seconds

Three Dimensional Modeling and Inverse Dynamic Analysis of An Excavator (굴삭기의 3차원 모델링 및 역동역학 해석)

  • 김외조;유완석;이만형;윤경화
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.8
    • /
    • pp.2043-2050
    • /
    • 1993
  • This paper presents a three dimensional modeling and dynamic analysis of a hydraulic excavator. An excavator composed of a boom, a bucket, two boom cylinders, an arm cylinder, and a bucket cylinder is used for the analysis. Each cylinder is modeled to two separate bodies linked by a translational joint. Judging from the actual degrees of freedom of the excavator, proper kinematic joints are selected to exclude redundant constraints in the modeling. In order to find the reaction forces at kinematic joints during operations, inverse dynamic analysis is carried out. Dynamic analysis is also carried out to verify the results from inverse dynamic analysis. The DADS program is used for analysis, with proper modification of the DADS user routine according to various motions.

A Study On The Development Of A Miniature Biped Robot Using Sensor (센서를 이용한 소형 이족 보행 로봇의 개발에 관한 연구)

  • Jung, Chang-Youn;Lee, Jong-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2002.07d
    • /
    • pp.2433-2435
    • /
    • 2002
  • The purpose of this paper is to introduce a case study of developing a miniature biped robot. The biped robot has a total of twenty-one degrees of freedom(DOF) ; There are two legs which have six DOF each, two arms which have three DOF each and a waist which has three DOF. RC servo-motors were used as actuators. We have developed motor controller, sensor controller and ISA-interface card. Motor controller, PWM generator, can control eight motors Sensor controller is connected to eight FSR(Force Sensing Resistors). For high level controller communicate with low level controller, ISA-interface card has developed. For the stable walking, CMAC(Cerebellar Model Articulation Controller) neural network algorithm is applied to our system CMAC is robust at noise.

  • PDF

Three Dimensional Modeling and Simulation of a Wheel Loader (휠로더의 3 차원 모델링 및 시뮬레이션)

  • Park, Jun-Yong;Yoo, Wan-Suk;Kim, Heui-Won;Hong, Je-Min;Ko, Kyoung-Eun
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.870-874
    • /
    • 2004
  • This paper presents a three dimensional modeling and simulations of operation and running of a wheel loader using the ADAMS program. A wheel loader consists of a bucket, a boom, a crank, a front frame, a rear frame, a bucket cylinder, two boom cylinders, two steering cylinders, nine spherical joints, six universal joints, five translation joints, three inline joints, a revolute and a fixed joint. Judging from the actual degrees of freedom of the wheel loader, proper kinematic joints are selected to exclude redundant constraints in the modeling. Through the running simulation over a bump with the three dimensional modeling, the joint reaction forces are calculated.

  • PDF

Implementation of a Remote Peg-in-Hole Operation using a Two Degrees of Freedom Force-Reflective Joystick

  • Sung K. An;Seung J. Han;Lee, Jang M.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1998.10a
    • /
    • pp.340-345
    • /
    • 1998
  • A virtual reality system is implemented for the operator supervising a robot's operation at a remote site. For this implementation, a two D.O.F force-reflective joystick is designed to reflect the force/torque measured at the end of robotic manipulator and to generate the motion command for the robot by the operator using this joystick. In addition, the visual information that is captured by a CCD camera, is transmitted to the remote operator and is displayed on a CRT monitor. The operator who is holding the force reflective joystick and watching the CRT monitor can resolve unexpected problems that the robot confronts with. That is, the robot performs the tasks autonomously unless it confronts with unexpected events that can be resolved by only the operator. To demonstrate the feasibility of this system, a remote peg-in-hole operation is implemented and the experimental data are shown.

  • PDF

COMPUTATIONS OF A NATURAL CONVECTION FLOW USING HERMITE FINITE ELEMENTS (Hermite 유한요소에 의한 자연대류 유동계산)

  • Kim, J.W.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2007.10a
    • /
    • pp.220-225
    • /
    • 2007
  • This paper is a continuation of the recent development on the hermite-based divergence free basis function and deals with a non-isothermal fluid flow thru the buoyancy driven flow in a square cavity with temperature difference across the two sides. The basis functions for the velocities consist of the hermite function and its curl. However, the basis for the temperature are the hermite function and its gradienst. Hence, the number of degrees of freedom at a node becomes 6, which are the stream function, two velocities, the temperature and its x- and y-derivatives. Numerical results for the streamlines, the temperatures, the x-velocities and the y-velocities show good agreements with those of De vahl Davis[7].

  • PDF

Partial state feedback $H_{\infty}$ control of the two-mass resonant system having IM (2관성 공진계를 갖는 유도 전동기의 부분적인 상태 보상을 이용한 $H_{\infty}$ 제어)

  • 강석진;김진수;김영석
    • Proceedings of the KIPE Conference
    • /
    • 1998.07a
    • /
    • pp.58-62
    • /
    • 1998
  • In the industrial motor drive systems, a torsional vibration is often generated because of the elastic elements in torque transmission. One of general methods for the system is H$\infty$ controller to suppress the torsional vibration and reject the torque disturbance. vibration and reject the torque disturbance. Moreover, the two-degrees-of-freedom controller, which includes the H$\infty$ controller, is designed in order to improve the command following property. In this paper, we propose a new H$\infty$ controller with partial state feedback. This method having simple structure satisfies with the fast command following property and the attenuation of disturbances and vibrations simultaneously, just like the complicated TDOF H$\infty$ controller

  • PDF

Vibration suppression control of two-mass system using partial state feedback and resonance ratio control (부분적인 상태궤환과 공진비제어를 갖는 2관성계의 진동억제제어)

  • Kim, Jin-Soo;Park, Hae-Am;Kim, Young-Seok
    • Proceedings of the KIEE Conference
    • /
    • 2000.07b
    • /
    • pp.1133-1135
    • /
    • 2000
  • In the industrial motor drive system which is composed of a motor and load connected with a flexible shaft, a torsional vibration is often generated because of the elastic elements in torque transmission. To solve this problem, the two-degrees-of-freedom $H_{\infty}$ controller was designed. But it is difficult to realize that controller. In this paper, a new partial state feedback $H_{\infty}$ controller with resonance ratio control is proposed. Proposed controller has simple structure but satisfies the attenuation of disturbances and vibrations.

  • PDF

A Study on the Fuzzy Learning Control for Force Control of Robot Manipulators (로봇 매니퓰레이터의 힘제어를 위한 퍼지 학습제어에 관한 연구)

  • 황용연
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.26 no.5
    • /
    • pp.581-588
    • /
    • 2002
  • A fuzzy learning control algorithm is proposed in this paper. In this method, two fuzzy controllers are used as a feedback and a feedforward type. The fuzzy feedback controller can be designed using simple knowledge for the controlled system. On the other hand, the fuzzy feedforward controller has a self-organizing mechanism and therefore, it does not need any knowledge in advance. The effectiveness of the proposed algorithm is demonstrated by experiment on the position and force control problem of a parallelogram type robot manipulator with two degrees of freedom. It is shown that the rapid learning and the robustness can be achieved by adopting the proposed method.

A Model Reference Variable Structure Control based on a Neural Network System Identification for an Active Four Wheel Steering System

  • Kim, Hoyong;Park, Yong-Kuk;Lee, Jae-Kon;Lee, Dong-Ryul;Kim, Gi-Dae
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.6
    • /
    • pp.142-155
    • /
    • 2000
  • A MIMO model reference control scheme incorporating the variable structure theory for a vehicle four wheel steering system(4WS) is proposed and evaluated for a class of continuous-time nonlinear dynamics with known or unknown uncertainties. The scheme employs an neural network to identify the plant systems, where the neural network estimates the nonlinear dynamics of the plant. By the Lyapunov direct method, the algorithm is proven to be globally stable, with tracking errors converging to the neighborhood of zero. The merits of this scheme is that the global system stability is guaranteed and it is not necessary to know the exact structure of the system. With the resulting identification model which contains the neural networks, it does not need higher degrees of freedom vehicle model than 3 degree of freedom model. Th proposed scheme is applied to the active four wheel system and shows the validity is used to investigate vehicle handing performances. In simulation of the J-turn maneuver, the reduction of yaw rate overshoot of a typical mid-size car improved by 30% compared to a two wheel steering system(2WS) case, resulting that the proposed scheme gives faster yaw rate response and smaller side angle than the 2WS case.

  • PDF

Control Effectiveness Analysis of the hawkmoth Manduca sexta: a Multibody Dynamics Approach

  • Kim, Joong-Kwan;Han, Jae-Hung
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.14 no.2
    • /
    • pp.152-161
    • /
    • 2013
  • This paper presents a control effectiveness analysis of the hawkmoth Manduca sexta. A multibody dynamic model of the insect that considers the time-varying inertia of two flapping wings is established, based on measurement data from the real hawkmoth. A six-degree-of-freedom (6-DOF) multibody flight dynamics simulation environment is used to analyze the effectiveness of the control variables defined in a wing kinematics function. The aerodynamics from complex wing flapping motions is estimated by a blade element approach, including translational and rotational force coefficients derived from relevant experimental studies. Control characteristics of flight dynamics with respect to the changes of three angular degrees of freedom (stroke positional, feathering, and deviation angle) of the wing kinematics are investigated. Results show that the symmetric (asymmetric) wing kinematics change of each wing only affects the longitudinal (lateral) flight forces and moments, which implies that the longitudinal and lateral flight controls are decoupled. However, there are coupling effects within each plane of motion. In the longitudinal plane, pitch and forward/backward motion controls are coupled; in the lateral plane, roll and side-translation motion controls are coupled.