• Title/Summary/Keyword: Two transformer

Search Result 552, Processing Time 0.026 seconds

A Study on Insulating Design and Test of Mini-Model windings for a 22.9 kV Class HTS Transformer Reducing AC Loss (저손실 22.9 kV급 고온초전도 변압기를 위한 미니 모델 권선의 절연 설계 및 시험 연구)

  • Baek, Seung-Myeong;Cheon, Hyeon-Gweon;Nguyen, Van Dung;Kwag, Dong-Sun;Lee, Chang-Hwa;Kim, Hea-Jong;Kim, Sang-Hyun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.05b
    • /
    • pp.94-99
    • /
    • 2004
  • This paper presents experimental data from model windings with different arrangement of coil in order to provide information to design a 22.9 kV class HTS transformer. Before experiment, the composite insulation of two different type of HTS transformers are investigated. The first basic of investigation is a breakdown characteristic of liquid nitrogen and flashover characteristic on the GFRP surface under ac and impulse, The second investigation is insulation design, manufacture and test of model windings. These include a AC withstand voltage test of 50 kV rms and a lighting impulse test of 150 kV at peak.

  • PDF

The Study of the Design Tests for Current Capability according to ANSI (ANSI 규격에 의한 주상 변압기의 동압력 내력시험에 관한 연구)

  • Kim, Sun-Koo;Kim, Won-Man;La, Dae-Ryeol;Roh, Chang-Il;Lee, Dong-Jun;Jung, Heung-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2003.07b
    • /
    • pp.909-911
    • /
    • 2003
  • The almost pole transformers are constructed with tank, cover, clamp etc., that contains the insulation oil, core, coil, terminals, bus and the other accessories. If some fault current will be flown by some trouble or accident, interior pressure of the transformer shall be very quickly rise, and mechanical components or insulation oil from the transformer enclosure shall be propelled or dropped from the tank. For the prevention of the above accident, recently the pole transformers should be done 'the Design Tests for Fault Current Capability' according to ANSI C57.12.20(1997) There are two tests method in this standard, Test Number I with a high current arcing fault, without internal fusible elements, shall be conducted on rack enclosure with its minimum designed air space. Test Number II with an internal fusible element, shall be conducted on each enclosure diameter utilizing the internal fusible elements. KEPCO recently request to be done the 'Design Tests for Fault Current Capability' for pole transformers according to KEPCO's standard ES141-$533{\sim}545$, PS141-$482{\sim}518$ and RS141-$611{\sim}628$ that is same with Test Number I of ANSI C57.12.20.

  • PDF

A Study of the Charging Current Effect on Underground Distribution Line in Electric Railway (전철 지중배전선로의 충전전류보상에 관한 연구)

  • Kim, Yang-Su;Jang, Woo-Jin
    • Proceedings of the KSR Conference
    • /
    • 2008.11b
    • /
    • pp.214-218
    • /
    • 2008
  • Because on the high-tension underground distribution line of an electric railway high voltage XLPE Cable two or three circuits between railway stations with a standard as receiving transformer facilities are established at a $30km{\sim}50km$ interval, reactive power in which the phase of a current is larger than that of a voltage is supplied when trains are not working, so when there are no loading or low loading as night. Due to the long-distance trend of the underground distribution system on an alternating current railway distribution line, the terminal voltage of a transformer is over the standard voltage, and after all, commercial cycle overvoltage is continued. To solve this problem, the shunt reactor is installed in middle of power distribution lines to maintain receiver voltage meted under the allowance regulation through control of the reactive power. Also, in case that the thickness of single cable is over $60mm^2$ and length of line is about over 30km, a circuit breaker is broken by shorting shunt ability of charging current in excess of shunt current(31.5A.rms). Therefore, this thesis presents installing the location of shunt reactor for quantitative analysis by using optimum algorism for compensation and control of the charging current.

  • PDF

Design of 9 kJ/s High Voltage LiPo Battery based 2-stage Capacitor Charger (배터리 기반 2단 충전 9 kJ/s 고전압 충전기 설계)

  • Cho, Chan-Gi;Jia, Ziyi;Ryoo, Hong-Je
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.24 no.4
    • /
    • pp.268-272
    • /
    • 2019
  • A lithium polymer battery-based 9 kJ/s high-voltage capacitor charger, which comprises two stages, is proposed. A modified LCC resonant converter and resonant circuit are introduced at the first and second stages, respectively. In the first stage, the methods for handling low-voltage and high-current batteries are considered. Delta-wye three-phase transformers are used to generate a high output voltage through the difference between the phase and line-to-line voltages. Another method is placing the series resonant capacitor of the LCC resonant components on the transformer secondary side, which conducts considerably low current compared with the transformer primary side. On the basis of the stable operation of the first charging stage, the secondary charging stage generates final output voltage by using the resonance. This additional stage protects the rectifying diodes from the negative voltage when the output capacitor is discharged for a short time. The inductance and capacitance of the resonance components are selected by considering the resonance charging time. The design procedure for each stage with the aforementioned features is suggested, and its performance is verified by not only simulation but also experimental results.

New CCM Single Stage PFC Full Bridge Converter (새로운 CCM 단일 전력단 역률보상 풀 브리지 컨버터)

  • Lim, Chang-Seob;Kwon, Soon-Kurl;Cho, Jung-Goo;Song, Doo-Ik
    • Proceedings of the KIEE Conference
    • /
    • 2002.07b
    • /
    • pp.986-989
    • /
    • 2002
  • This paper proposes a new single stage power factor correction (PFC) full bridge converter which operates at continuous conduction mode(CCM). The proposed single stage PFC consists of typical zero voltage switching(ZVS) full bridge DC/DC converter, two transformer auxiliary windings, and two small inductors, and two diodes. Neither additional active switch nor any control circuit are added for PFC resulting in very low cost. The proposed converter provides input power factor correction with CCM control and tight output voltage regulation. All switching devices are operated under ZVS with minimum voltage stress. Operation principle and analysis are explained and verified with computer simulation and experimental results on a 1.2kW, 100kHz prototype.

  • PDF

New Single Stage PFC Full Bridge Converter (새로운 단일전력단 역률보상 풀브리지 컨버터)

  • 임창섭;권순걸;조정구;송두익
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.52 no.12
    • /
    • pp.655-660
    • /
    • 2003
  • This paper proposes new single stage power factor correction (PFC) full bridge converter. The proposed converter is combined previous ZVS full bridge DC/DC converter with two inductors, two diodes, two magnetic coupling transformer for PFC. This process of power is isolated from the source and also regulate stable DC output voltage in a category. In this topology, the voltage stress of main switches is reduced by zero voltage switching. Moreover, the proposed converter doesn't need active PFC switch and auxiliarly circuits, like control and gating board, so it could decrease the size and cost and increase the efficiency.

A New Phase Shift Full Bridge Converter with Serially Connected Two Transformers (직렬 연결된 두개의 트랜스포머를 갖는 새로운 위상천이 풀 브릿지 컨버터)

  • Koo Gwan-Bon;Kim Tae-Sung;Moon Gun-Woo;Youn Myung-Joong
    • Proceedings of the KIPE Conference
    • /
    • 2002.07a
    • /
    • pp.370-373
    • /
    • 2002
  • A new phase shift full bridge converter(PSFB) with serially connected two transformers is proposed. It is well suited for applications in the communication equipment of a few hundred watts. The main features of the proposed converter are a wide input voltage range, an easiness to meet the requirement for zero voltage switching (ZVS) condition at a light load, and a small output voltage ripple. Furthermore, it features high power density since serially connected two transformers can replace both a main transformer and an output inductor. A mode analysis and experimental results are presented to verify the validity of the proposed converter.

  • PDF

Three-Phase Four-Wire Inverter Topology with Neutral Point Voltage Stable Module for Unbalanced Load Inhibition

  • Cai, Chunwei;An, Pufeng;Guo, Yuxing;Meng, Fangang
    • Journal of Power Electronics
    • /
    • v.18 no.5
    • /
    • pp.1315-1324
    • /
    • 2018
  • A novel three-phase four-wire inverter topology is presented in this paper. This topology is equipped with a special capacitor balance grid without magnetic saturation. In response to unbalanced load and unequal split DC-link capacitors problems, a qusi-full-bridge DC/DC topology is applied in the balance grid. By using a high-frequency transformer, the energy transfer within the two split dc-link capacitors is realized. The novel topology makes the voltage across two split dc-link capacitors balanced so that the neutral point voltage ripple is inhibited. Under the condition of a stable neutral point voltage, the three-phase four-wire inverter can be equivalent to three independent single phase inverters. As a result, the three-phase inverter can produce symmetrical voltage waves with an unbalanced load. To avoid forward transformer magnetic saturation, the voltages of the primary and secondary windings are controlled to reverse once during each switching period. Furthermore, an improved mode chosen operating principle for this novel topology is designed and analyzed in detail. The simulated results verified the feasibility of this topology and an experimental inverter has been built to test the power quality produced by this topology. Finally, simulation results verify that the novel topology can effectively improve the inhibition of an inverter with a three-phase unbalanced load while decreasing the value of the split capacitor.

A Study on Parallel Operation of PWM Converter for Auxiliary Power Supply of High Speed Train (고속전철 보조전원장치용 PWM 컨버터의 병렬운전에 관한 연구)

  • Kim, Yeon-Chung;O, Geun-U;Won, Chung-Yeon;Choe, Jong-Muk;Gi, Sang-U
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.37 no.6
    • /
    • pp.64-72
    • /
    • 2000
  • This paper deals with the parallel operation of two PWM converters for auxiliary block of high speed train. The parallel operation of AC/DC PWM converter controlled by 3-level PWM switching method to operate switching devices to realize a high power factor and reduce the primary side of the transformer current harmonics is proposed. In this paper, it is presented the phase shift technique between two converters switching phase, solution to eliminate the coupling effects due to the transformer and zero crossing detection method for synchronized with the source and controller. Experimental results for laboratory system with TMS320C31 microprocessor and 10[kVA]PWM converter confirm the validity of the proposed algorithm.

  • PDF

Study on the Condensation Reaction of Alkyl Glycidyl Ethers and Fatty Acids (알킬 글리시딜에테르와 지방산의 축합반응 연구)

  • Kim, Ji-Hyun;Hwang, Hyun Ah;Lee, Young-Seak;Lee, Byung Min
    • Applied Chemistry for Engineering
    • /
    • v.23 no.4
    • /
    • pp.416-420
    • /
    • 2012
  • A convenient procedure for the synthesis of fatty acid diesters was studied. Long chain diesters have been used as biolubricant and transformer oils. The series of octyl, dodecyl, hexadecyl, octadecyl, and octadec-9-enyl glycidyl ether were used to synthesize those diesters. Alkyl glycidyl ethers were reacted with fatty acid such as oleic acid and octanoic acid, and octanoic acid. The one-step / two-step reactions were compared during the condensation reaction. The products were confirmed by $^{1}H-NMR$, FT-IR, and HR/MS spectra. The yield of the product 1-O-acyl-2-O, 3-O-dioctadec-9-enoylglycerol was 55~60%.