• Title/Summary/Keyword: Two shaft

Search Result 546, Processing Time 0.024 seconds

Torsional Strength of CFRP Material for Application of Ship Shaft System (CFRP 소재의 선박용 축계 적용을 위한 비틀림강도 특성)

  • Kim, Min-kyu;Shin, Ick-gy;Kim, Seon Jin;Park, Dae Kyeom;Seo, Jung Kwan
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.58 no.6
    • /
    • pp.431-439
    • /
    • 2021
  • The Carbon Fiber Reinforced Plastic (CFRP) material is recently widely used in the composite industry with excellent rigidity and lightweight properties. A ship shaft system requires high standards of safety on torsional strength capacity. The purpose of this study is to verify the applicability of a CFRP shaft system to take the place of metal shaft systems for ships from a viewpoint of torsional strength. Selection of materials and manufacturing method are executed then two geometrically scaled CFRP shaft system models were designed and manufactured with three-layer patterns. The models were used for a series of torsion tests under single and repeated torsional loading conditions. Detailed design and manufacturing methods for a CFRP ship shaft system are documented and the torsion test results are listed in this paper. The results of this study could be useful guidelines on the development of CFRP ship shaft systems and a test method.

A Study on the Vibration Characteristic of Slip-In Tube Propeller Shaft in FR Automobile (후륜 구동 자동차의 슬립 인 튜브 프로펠러 샤프트의 진동특성에 관한 연구)

  • Lee, H.J.;Hwang, J.H.;Kim, S.S.;Byun, J.M.;Kim, E.Z.;Cha, D.J.;Kang, S.W.;Byun, W.Y.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.309-313
    • /
    • 2006
  • Many researchers have studied on the lightness of automobile. These researches are such as a body shell, sub frame, fuel tank, engine etc. The transmission Part is a magnitude one in the aspect of weight. A drive shaft (propeller shaft) transmits the engine power to rear differential gear assembly. It is used in the compact car that is a single drive shaft. But in the case of long body cars such as SUV (Sports Utility Vehicle), truck and large vehicle, two or three divided drive shaft are used to prevent the vibration damage from a drive shaft that has been taken high torsion and rotation. This multi-divided drive shaft structure is so heavy because it is assembled by yoke, center bearing and solid spline axis. When the rear axle move up and down, the spline shaft adjust the variation of a length between the transmission and rear axle gearbox. In this paper, it is studied in the experimental method that is a bending vibration characteristic of slip in tube shaped propeller shaft. This type propeller shaft is developed to combine the spline axis with drive shaft and can be light in weight of transmission part.

  • PDF

Wear Analysis of Journal Bearings in a Misaligned Shaft During Motoring Start-up and Coast-down Cycles - Part I: Study on the Change in Oil Film Thickness at Potential Wear Regions (모터링 시동 및 시동정지 사이클에서 경사진 축을 갖는 저어널 베어링의 마모 해석 - Part I: 마모발생 가능영역에서의 유막 변화 연구)

  • Chun, Sang Myung
    • Tribology and Lubricants
    • /
    • v.33 no.4
    • /
    • pp.153-167
    • /
    • 2017
  • The aim of this study is to find the change in trend in the eccentricities of two journal bearings supporting the crankshaft of a single cylinder engine and the degree of misalignment of the shaft. We analyze the change in oil film thickness considering the wear scar under mixed-elasto-hydrodynamic lubrication regime at potential wear regions. For this, we first calculate the central eccentricities of the two journal bearings by using the mobility method. Then we calculate the outer end eccentricity by using the geometry of the bearings. Further, the tilting angle and degree of misalignment of the shaft are calculated by using the eccentricities of the two bearings. We show that the eccentricity of bearing #1, on which higher load is applied, increases at the beginning of the start-up cycle and during the coast-down cycle. However, the eccentricity of bearing #2, on which lower load is applied, decreases at the beginning of the start-up cycle and increases during the coast-down cycle. From the results of the analysis of oil film thickness, we show that the mixed-elasto-hydrodynamic lubrication regime for a misaligned shaft is at the initial stages of the start-up cycle for both bearing #1 and #2 and at the final stage of the coast-down cycle for only bearing #1.

Wear Analysis of Journal Bearings Operating in a Shaft During Motoring Start-up and Coast-down Cycles - Part II: Wear Analysis of two Journal Bearings Supporting a Misaligned Shaft (모터링 시동 및 시동정지 사이클에서 경사진 축을 갖는 저어널베어링의 마모 해석 - Part II: 경사진 축을 지지하는 두 저어널베어링의 마모해석)

  • Chun, Sang Myung
    • Tribology and Lubricants
    • /
    • v.33 no.4
    • /
    • pp.168-186
    • /
    • 2017
  • This paper presents a wear analysis procedure for calculating the wear of journal bearings during the start-up and coast-down cycles of a motoring stripped-down single cylinder engine operating with a tilted shaft. In order to decide whether the lubrication state of a journal bearing is in the mixed-elasto-hydrodynamic lubrication regime, we utilize lift-off speed and MOFT (most oil film thickness) under mixed-elasto-hydrodynamic lubrication regime at the corresponding aligned shaft. We formulate an equation for the modified film thickness in a misaligned journal bearing considering the additional wear volume described in Part I of this study. For this, we use the calculation results of the degree of misalignment and tilting angle obtained after finding the eccentricities of the two bearings supporting the crankshaft of a single cylinder engine. In this Part II, we calculate the wear of journal bearings using the fractional film defect coefficient, the asperity load sharing factor, and the modified specific wear rate for the application of mixed-elasto-hydrodynamic lubrication regime. We show that the accumulated wear volume after turning the ignition switch on and off once, increases to ${\sigma}=39{\mu}m$ and then decreases from ${\sigma}=39{\mu}m$ with increasing in surface roughness.

Bending Mode Vibration Control of a Flexible Shaft Supported by a Hybrid Air-foil Magnetic Bearing (공기포일 자기 하이브리드 베어링으로 지지되는 연성 축의 휨 모드 진동 제어)

  • Jeong, Se-Na;Ahn, Hyeong-Joon;Kim, Seung-Jong;Lee, Yong-Bok
    • Tribology and Lubricants
    • /
    • v.27 no.2
    • /
    • pp.57-64
    • /
    • 2011
  • Hybrid air-foil magnetic bearing integrates two oil free bearing technologies synergetically to adopt the strengths of two bearings with minimizing their weaknesses. This paper presents bending mode vibration control of a flexible shaft supported by the hybrid air-foil magnetic bearing. An experiment set-up of a flexible shaft supported by the hybrid air-foil magnetic bearing is built. In order to verify the effectiveness of the hybrid bearing, unbalance responses of the flexible shaft supported by three different bearings: air-foil, magnetic and hybrid bearings are compared. Effect of load sharing between air-foil and magnetic bearings are investigated through changing the control gain and the rotor center position of magnetic bearing. The experimental results shows that the hybrid bearing can control the bending mode vibration of the flexible shaft effectively and an optimal performance can be achieved with an appropriate load sharing between the air-foil and the magnetic bearings.

Analysis of Horizontal Behavior of a Single Column/Shaft by Horizontal Two-way Pile Load Test (반복수평재하시험을 통한 단일형현장타설말뚝의 거동분석)

  • Jeong, Sang-Seom;Song, Sung-Wook;Kim, Byung-Chul
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.03a
    • /
    • pp.1132-1143
    • /
    • 2008
  • A single Column/Shaft which extended the pile to the column of the bridge with same diameter has better safety and economical profit, but it usually has larger lateral displacement due to lateral loads such as wind, earthquake, wave, etc. A series of horizontal pile load testing were performed to study the lateral behavior of single column/shaft with varying different free lengths and embedded pile lengths. Eight instrumented test piles were cast-in-placed by bonding strain gauges at certain locations on both faces of the pile to measure bending moment, from two-way loadings. Linear variable differential transformers(LVDTs) were installed to measure the lateral pile displacement. Based on this, it is found that the test single column/shaft with different free lengths shows different failure modes. If the test pile has a longer free length, the failure occurs at the near the ground surface, but the shorter one's failure occurs at the below the ground surface.

  • PDF

Dynamic Behavior of Rotating Shaft System Corresponding to Operating Modes (운전모드에 따른 회전축계의 동적거동)

  • Kim, Sang-Hwan
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.9
    • /
    • pp.2744-2751
    • /
    • 1996
  • In case of limited power supply, a rotating shaft system may not reach its operating speed that is greater than its critical speed, but the speed oscillates with small ampllitude near critical speed. As a result, it is considered that the operating mode plays an important role in the smooth start of machines. In order to investigate the dynamic behaviors of the rotating shaft system at the beginning stage, one has derived the equations of motion whose degrees of freedom is three, two translations and one rotation. The simultaneous differential equations are numerically solved by using runge-Kutta method, and thus the small time step length could be required corresponding to the stability of solution. Three types of operating modes dependent upon the driving torque rate have been numerically investigated according to the maximum displacement of shaft center. The first type of relation is linear, the second type is composed of two linear curves recommended by machine manufacturer, and the last one is the proposed torque curve reflecting the frequency response curve of one degree of freedom system. For the second type of modes, it is found that the optimal range of intermediate speed to the critical speed lies between 0.8 and 0.9. In addition to that, the maximum displacement can be reduced more if the third type of mode is utilized.

Design of Adhesive Joints for Composite Propeller Shafts (복합재료 동력전달축의 접착조인트 설계)

  • 김진국;이대길
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2000.04a
    • /
    • pp.149-153
    • /
    • 2000
  • Substituting composite structures for conventional metallic structures has many advantages because of higher specific stiffness and specific strength of composite materials. In this work, one-piece propeller shafts composed of carbonfepoxy and glass/epoxy composites were designed and manufactured for a rear wheel drive automobile satisfying three design specifications, such as static torque transmission capability, torsional buckling and the fundamental natural bending frequency. Single lap adhesively bonded joint was employed to join the composite shaft and the aluminum yoke. For the optimal adhesive joining of the composite propeller shaft to the aluminum yoke, the torque transmission capability of the adhesively bonded composite shaft was calculated with respect to bonding length and yoke thickness by finite element method and compared with the experimental result. Then an optimal design method was proposed based on the failure model which incorporated the nonlinear mechanical behavior of aluminum yoke and epoxy adhesive. From the experiments and FEM analyses, it was found that the static torque transmission capability of composite propeller shaft was maximum at the critical yoke thickness, and it saturated beyond the critical length. Also, it was found that the one-piece composite propeller shaft had 40% weight saving effect compared with a two-piece steel propeller shaft.

  • PDF

A theoretical calculation of coupled free, transverse vibration of the multi-supported shaft system by the finite element method (유한요소법에 의한 다점지지축계의 연성자유횡진동 계산에 관한 연구)

  • 유광택;전효중
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.10 no.4
    • /
    • pp.41-49
    • /
    • 1986
  • With the trend towards high propulsive level, increasing ship's dimensions and heavier shaft systems supported by the hull structure of relatively stiffness in modern ships, transverse vibrations of propulsion shaft system have become one of the problems that should be predicted in the early design stage. Regarding transverse vibrations, coupling terms such as oilfilm, gyroscope and hydrodynamic effect of the propeller exist between the vertical and horizontal vibration, furthermore for the shaft system with strut and bossing its physical properties incorporated with hull structure must be considered. In order to predict the transverse vibratory condition of the propulsion shaft and take some appropriate countermeasures, it is necessary to make a fairly strict estimation of the vibratory behaviours of it. In this paper, theoretical approach using the finite element method is investigated to calculate natural frequencies and vibration modes for coupled free transverse vibrations of shaft system in two planes. Based on the method investigated a digital computer program is developed and is applied to calculate the above-mentioned vibrations of an experimental model shaft system. The results of the calculation are compared with those of the experimental measurements and they show an acceptable agreement.

  • PDF

A Study on Shaft Alignment of the Rotating Machinery by Using Strain Gages (스트레인게이지를 이용한 회전체의 축정렬 연구)

  • Kim, Koung-Suk;Jang, Wan-Shik;Na, Sang-Soo;Jung, Hyun-Chul
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.5
    • /
    • pp.126-132
    • /
    • 2002
  • Misaligned shafts of the rotating machinery have caused noise, vibration. bearing failures, and stress concentration of coupling parts which decrease the efficiency and life of shaft systems. Therefore the proper shaft alignment of those system should be monitored continuously in dynamic condition. To solve these problems under dynamic condition a telemetry system is used. In this study, the condition of the least bending moment which is known by analyzing the structure and stress induced by misalignment is found. After the shaft is aligned by dial gage, a telemetry system with strain gages is installed on shaft. The relationship between bearing displacement and moment of coupling part influenced by misalignment is investigated. The moment derived from two shaft strain at the nearby coupling is measured. The bending strain is measured 5 times for average in static state as well as in dynamic state with 100∼700 rpm.