• Title/Summary/Keyword: Two layers

Search Result 2,667, Processing Time 0.043 seconds

Fabrication and Characteristics of Supported Type Planar Solid Oxide Fuel Cell By Co-firing Process (공소결법에 의해 제조된 지지체식 평판형 고체산화물 연료전지 성능 특성)

  • Song, Rak-Hyun
    • Korean Journal of Materials Research
    • /
    • v.13 no.3
    • /
    • pp.160-168
    • /
    • 2003
  • The co-firing processes for the supported type planar solid oxide fuel cell were investigated. A flat cell of $7.7${\times}$10.8\textrm{cm}^2$ was fabricated successfully by the co-firing process, in which green films were co-sintered in the forms of two layers of anode/electrolyte or of three layers of anode/electrolyte/cathode with gas distributor. A co-fired cell of two layers yielded a power of 200 ㎽/$\textrm{cm}^2$ at 608 ㎷. Its performance loss was mainly due to iR drop in the anodic gas distributor, which was attributed to poor contact between anodic gas distributor and current collector. The performance in the co-fired cell of three layers was much lower than that of two layers, which resulted from the large iR drop and activation overvoltage at the cathodic side. In the co-fired cell of two layers, the impedance analysis indicated that the performance decay during cell operation is due to both anode overvoltage and iR drop at anode side. Also the electrode reaction of the co-fired two layers' cell is considered to be controlled by activation overvoltage within the low current of 50 ㎃.

A First-principles Study on Magnetism of $Fe_2 /Ir_4$(001) Superlattice

  • Kim, Jae Il;Lee, In Gee
    • Journal of Magnetics
    • /
    • v.6 no.3
    • /
    • pp.80-82
    • /
    • 2001
  • We have investigated magnetism of $Fe_2 /Ir_4$(001) superlattice in terms of a first-principles calculation by using an all-electron full-potential linearized augmented plane-wave (FLAPW) method within the generalized gradient approximation (GGA). We considered two magnetic states, the ferromagnetic (FM) and antiferromagnetic (AFM) coupled states between the Fe layers. It was found that the FM state was energetically more stable than the AFM one by 0.166 eV. Calculated magnetic moments of the Fe layers were, in absolute values, 2.45$\mu_B$ and 2.30 $\mu_B$for the FM and AFM states, respectively. We also found that the Ir layers had very small magnetic moments less than 0.1 $\mu_B$ for both magnetic states. In all the magnetic states, the subinterface Ir layers were coupled antiferromagnetically to the interface Ir layers, while the interface Ir layers were always coupled frerromagnetically to the interface Fe layers. These results contradicted to recent experimental reports of magnetically "dead"Fe layers in Fe/Ir superlattices for which the Fe layer thickness was less than two atomic layers. We attributed that the experimentally observed "dead"Fe layers were due to possible interdiffusion between Ir and Fe layers.en Ir and Fe layers.

  • PDF

Transient analysis of two dissimilar FGM layers with multiple interface cracks

  • Fallahnejad, Mehrdad;Bagheri, Rasul;Noroozi, Masoud
    • Structural Engineering and Mechanics
    • /
    • v.67 no.3
    • /
    • pp.277-281
    • /
    • 2018
  • The analytical solution of two functionally graded layers with Volterra type screw dislocation is investigated under anti-plane shear impact loading. The energy dissipation of FGM layers is modeled by viscous damping and the properties of the materials are assumed to change exponentially along the thickness of the layers. In this study, the rate of gradual change ofshear moduli, mass density and damping constant are assumed to be same. At first, the stress fields in the interface of the FGM layers are derived by using a single dislocation. Then, by determining a distributed dislocation density on the crack surface and by using the Fourier and Laplace integral transforms, the problem are reduce to a system ofsingular integral equations with simple Cauchy kernel. The dynamic stress intensity factors are determined by numerical Laplace inversion and the distributed dislocation technique. Finally, various examples are provided to investigate the effects of the geometrical parameters, material properties, viscous damping and cracks configuration on the dynamic fracture behavior of the interacting cracks.

Numerical analysis of the receding contact problem of two bonded layers resting on an elastic half plane

  • Yaylaci, Murat;Terzi, Cemalettin;Avcar, Mehmet
    • Structural Engineering and Mechanics
    • /
    • v.72 no.6
    • /
    • pp.775-783
    • /
    • 2019
  • The present study deals with the numerical analysis of the symmetric contact problem of two bonded layers resting on an elastic half plane compressed with a rigid punch. In this context, Finite Element Method (FEM) based software called ANSYS and ABAQUS are used. It is assumed that the elastic layers have different elastic constants and heights and the external load is applied to the upper elastic layer by means of a rigid stamp. The problem is solved under the assumptions that the contact between two elastic layers, and between the rigid stamp are frictionless, the effect of gravity force is neglected. To validate the constructed model and obtained results a comparison is performed with the analytical results in literature. The numerical results for normal stresses and shear stresses are obtained for various parameters of load, material and geometry and are tabulated and illustrated.

Co-sintering of M2/316L Layers for Fabrication of Graded Composite Structures

  • Firouzdor, V.;Simchi, A.;Kokabi, A.H.
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.696-697
    • /
    • 2006
  • This paper presents the densification and microstructure evolution of bilayer components made from 316L stainless steel and M2 High speed steel during co-sintering process. The sintering was carried out at temperatures ranging from $1230-1320^{\circ}C$ in a reducing atmosphere. The addition of boron to 316L was examined in order to increase the densification rate and improve the sintering compatibility between the two layers. It was shown that the mismatch strain bettwen the two layers induces biaxial stresses during sintering, influencing the densification rate. The effect of boron addition was also found to be positive as it improves the bonding between the two layers.

  • PDF

Stability of five layer sandwich beams - a nonlinear hypothesis

  • Smyczynski, Mikolaj J.;Magnucka-Blandzi, Ewa
    • Steel and Composite Structures
    • /
    • v.28 no.6
    • /
    • pp.671-679
    • /
    • 2018
  • The paper is devoted to the stability analysis of a simply supported five layer sandwich beam. The beam consists of five layers: two metal faces, the metal foam core and two binding layers between faces and the core. The main goal is to elaborate a mathematical and numerical model of this beam. The beam is subjected to an axial compression. The nonlinear hypothesis of deformation of the cross section of the beam is formulated. Based on the Hamilton's principle the system of four stability equations is obtained. This system is approximately solved. Applying the Bubnov-Galerkin's method gives an ordinary differential equation of motion. The equation is then numerically processed. The equilibrium paths for a static and dynamic load are derived and the influence of the binding layers is considered. The main goal of the paper is an analytical description including the influence of binding layers on stability, especially on critical load, static and dynamic paths. Analytical solutions, in particular mathematical model are verified numerically and the results are compared with those obtained in experiments.

New Approach to Optimize the Size of Convolution Mask in Convolutional Neural Networks

  • Kwak, Young-Tae
    • Journal of the Korea Society of Computer and Information
    • /
    • v.21 no.1
    • /
    • pp.1-8
    • /
    • 2016
  • Convolutional neural network (CNN) consists of a few pairs of both convolution layer and subsampling layer. Thus it has more hidden layers than multi-layer perceptron. With the increased layers, the size of convolution mask ultimately determines the total number of weights in CNN because the mask is shared among input images. It also is an important learning factor which makes or breaks CNN's learning. Therefore, this paper proposes the best method to choose the convolution size and the number of layers for learning CNN successfully. Through our face recognition with vast learning examples, we found that the best size of convolution mask is 5 by 5 and 7 by 7, regardless of the number of layers. In addition, the CNN with two pairs of both convolution and subsampling layer is found to make the best performance as if the multi-layer perceptron having two hidden layers does.

Solving the contact problem of functionally graded layers resting on a HP and pressed with a uniformly distributed load by analytical and numerical methods

  • Yaylaci, Murat;Sabano, Bahar Sengul;Ozdemir, Mehmet Emin;Birinci, Ahmet
    • Structural Engineering and Mechanics
    • /
    • v.82 no.3
    • /
    • pp.401-416
    • /
    • 2022
  • The aim of this study is to examine the frictionless double receding contact problem for two functionally graded (FG) layers pressed with a uniformly distributed load and resting on a homogeneous half plane (HP) using analytical and numerical methods. The FG layers are made of a non-homogeneous material with an isotropic stress-strain law with exponentially varying properties. It is assumed that the contact at the FG layers and FG layer-HP interface is frictionless. The body force of the FG layers and homogeneous HP are ignored in the study. Firstly, an analytical solution for the contact problem has been realized using the theory of elasticity and the Fourier integral transform techniques. Then, the problem modeled and two-dimensional analysis was carried out by using the ANSYS package program based on FEM. Numerical results for contact lengths and contact pressures between FG layers and FG layer-HP were provided for various dimensionless quantities including material inhomogeneity, distributed load width, the shear module ratio, and the heights of the FG layers for both methods. The results obtained using FEM were compared with the results found using the analytical formulation. It was found that the results obtained from analytical formulation were in perfect agreement with the FEM study.

Low-Molecular-Weight White Organic-Light-Emitting-Devices using Direct Color Mixing Method

  • Lee, Sung-Soo;Song, Tae-Joon;Ko, Myung-Soo;Cho, Sung-Min
    • Journal of Information Display
    • /
    • v.3 no.2
    • /
    • pp.6-12
    • /
    • 2002
  • In order to achieve white emission from organic light emitting devices (OLEDs), five distinct structures were fabricated and tested. The white emission was obtained using two different color-emitting materials (yellow from rubrene-doped $Alq_3$ and blue from DPVBi) with or without a carrier-blocking layer. For enhancing the red emission, two types of devices with three-color emitting materials were fabricated. The white emission, close to the CIE coordinate of (0.3,0.3), was achieved by using two blocking layers as well that as without a blocking layer. This paper covers the subject of controlling the location of exciton recombination zone. It has been found that there is a trade-off in that the devices with three color emitting layers do not show as much luminescence efficiency compared to those with two color emitting layers, but rather, show distinct red emission in the resultant emission spectra. The highest power efficiency was measured to be 1.15lm/W at 2,000 $cd/m^2$ for a structure with two color-emitting layers.

Multimodal Medical Image Fusion Based on Two-Scale Decomposer and Detail Preservation Model (이중스케일분해기와 미세정보 보존모델에 기반한 다중 모드 의료영상 융합연구)

  • Zhang, Yingmei;Lee, Hyo Jong
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2021.11a
    • /
    • pp.655-658
    • /
    • 2021
  • The purpose of multimodal medical image fusion (MMIF) is to integrate images of different modes with different details into a result image with rich information, which is convenient for doctors to accurately diagnose and treat the diseased tissues of patients. Encouraged by this purpose, this paper proposes a novel method based on a two-scale decomposer and detail preservation model. The first step is to use the two-scale decomposer to decompose the source image into the energy layers and structure layers, which have the characteristic of detail preservation. And then, structure tensor operator and max-abs are combined to fuse the structure layers. The detail preservation model is proposed for the fusion of the energy layers, which greatly improves the image performance. The fused image is achieved by summing up the two fused sub-images obtained by the above fusion rules. Experiments demonstrate that the proposed method has superior performance compared with the state-of-the-art fusion methods.