• 제목/요약/키워드: Two and Three Dimensional Numerical Analysis

검색결과 552건 처리시간 0.024초

An Implementation of the Robust Inviscid Wall Boundary Condition in High-Speed Flow Calculations

  • Kim, Moon-Sang;Jeon, Byung-Woo;Kim, Yong-Nyun;Kwon, Hyeok-Bin;Lee, Dong-Ho
    • Journal of Mechanical Science and Technology
    • /
    • 제15권5호
    • /
    • pp.671-680
    • /
    • 2001
  • Boundary condition is one of the major factors to influence the numerical stability and solution accuracy in numerical analysis. One of the most important physical boundary conditions in the flowfield analysis is the wall boundary condition imposed on the body surface. To solve a two-dimensional Euler equation, totally four numerical wall boundary conditions should be prescribed. Two of them are supplied by the flow tangency condition. The other two conditions, therefore, should be prepared additionally in a suitable way. In this paper, four different sets of wall boundary conditions are proposed and then applied to solve high-speed flowfields around a quarter circle geometry. A two-dimensional compressible Euler solver is prepared based on the finite volume method. This solver hires three different upwind schemes; Steger-Warmings flux vector splitting, Roes flux difference splitting, and Lious advection upstream splitting method. It is found that the way to specify the additional numerical wall boundary conditions strongly affects the overall stability and accuracy of the upwind schemes in high-speed flow calculation. The optimal wall boundary conditions should be also chosen very carefully depending on the numerical schemes used to solve the problem.

  • PDF

1 Giga급 집적회로 구현을 위한 3차원 산화 공정 시뮬레이터 개발 및 산화층 성장 특성 분석에 관한 연구 (Development of three-dimensional thermal oxidation process simulator and analysis the characteristics of multi-dimensional oxide growth)

  • 이준하;황호정
    • 전자공학회논문지A
    • /
    • 제32A권8호
    • /
    • pp.107-118
    • /
    • 1995
  • Three-dimensional simulator for thermal oxidation process is developed. The simulator is consisted by two individual module, one is analytic-model module and the other is numerical-model module. The analytic-model which uses simple complementary-error function guarantees fast calculation in prediction of multi-dimensional oxidation process. The numerical-model which is based on boundary element method (BEM), has a good accuracy and suitable for various process conditions. The results of this study show that oxide growth is retarded at the corner of hole structure and enhanced at the corner of island structure. These effects are reson of different distribution of oxidant diffusion and mask stress. The utility of models and simulator developed in this study is demonstrated by using it to predict not only traditional shape of LOCOS but also process effects in small geometry.

  • PDF

비정렬격자 SIMPLE 알고리즘기반 이상유동 수치해석 기법 (NUMERICAL METHOD FOR TWO-PHASE FLOW ANALYSIS USING SIMPLE-ALGORITHM ON AN UNSTRUCTURED MESH)

  • 김종태;박익규;조형규;김경두;정재준
    • 한국전산유체공학회지
    • /
    • 제13권4호
    • /
    • pp.86-95
    • /
    • 2008
  • For analyses of multi-phase flows in a water-cooled nuclear power plant, a three-dimensional SIMPLE-algorithm based hydrodynamic solver CUPID-S has been developed. As governing equations, it adopts a two-fluid three-field model for the two-phase flows. The three fields represent a continuous liquid, a dispersed droplets, and a vapour field. The governing equations are discretized by a finite volume method on an unstructured grid to handle the geometrical complexity of the nuclear reactors. The phasic momentum equations are coupled and solved with a sparse block Gauss-Seidel matrix solver to increase a numerical stability. The pressure correction equation derived by summing the phasic volume fraction equations is applied on the unstructured mesh in the context of a cell-centered co-located scheme. This paper presents the numerical method and the preliminary results of the calculations.

비정렬격자 SIMPLE 알고리즘기반 이상유동 수치해석 기법 (NUMERICAL METHOD FOR TWO-PHASE FLOW ANALYSIS USING SIMPLE-ALGORITHM ON AN UNSTRUCTURED MESH)

  • 김종태;박익규;조형규;김경두;정재준
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2008년도 학술대회
    • /
    • pp.71-78
    • /
    • 2008
  • For analyses of multi-phase flows in a water-cooled nuclear power plant, a three-dimensional SIMPLE-algorithm based hydrodynamic solver CUPID-S has been developed. As governing equations, it adopts a two-fluid three-field model for the two-phase flows. The three fields represent a continuous liquid, a dispersed droplets, and a vapour field. The governing equations are discretized by a finite volume method on an unstructured grid to handle the geometrical complexity of the nuclear reactors. The phasic momentum equations are coupled and solved with a sparse block Gauss-Seidel matrix solver to increase a numerical stability. The pressure correction equation derived by summing the phasic volume fraction equations is applied on the unstructured mesh in the context of a cell-centered co-located scheme. This paper presents the numerical method and the preliminary results of the calculations.

  • PDF

비정렬격자 SIMPLE 알고리즘기반 이상유동 수치해석 기법 (NUMERICAL METHOD FOR TWO-PHASE FLOW ANALYSIS USING SIMPLE-ALGORITHM ON AN UNSTRUCTURED MESH)

  • 김종태;박익규;조형규;김경두;정재준
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2008년 추계학술대회논문집
    • /
    • pp.71-78
    • /
    • 2008
  • For analyses of multi-phase flows in a water-cooled nuclear power plant, a three-dimensional SIMPLE-algorithm based hydrodynamic solver CUPID-S has been developed. As governing equations, it adopts a two-fluid three-field model for the two-phase flows. The three fields represent a continuous liquid, a dispersed droplets, and a vapour field. The governing equations are discretized by a finite volume method on an unstructured grid to handle the geometrical complexity of the nuclear reactors. The phasic momentum equations are coupled and solved with a sparse block Gauss-Seidel matrix solver to increase a numerical stability. The pressure correction equation derived by summing the phasic volume fraction equations is applied on the unstructured mesh in the context of a cell-centered co-located scheme. This paper presents the numerical method and the preliminary results of the calculations.

  • PDF

A local-global scheme for tracking crack path in three-dimensional solids

  • Manzoli, O.L.;Claro, G.K.S.;Rodrigues, E.A.;Lopes, J.A. Jr.
    • Computers and Concrete
    • /
    • 제12권3호
    • /
    • pp.261-283
    • /
    • 2013
  • This paper aims to contribute to the three-dimensional generalization of numerical prediction of crack propagation through the formulation of finite elements with embedded discontinuities. The analysis of crack propagation in two-dimensional problems yields lines of discontinuity that can be tracked in a relatively simple way through the sequential construction of straight line segments oriented according to the direction of failure within each finite element in the solid. In three-dimensional analysis, the construction of the discontinuity path is more complex because it requires the creation of plane surfaces within each element, which must be continuous between the elements. In the method proposed by Chaves (2003) the crack is determined by solving a problem analogous to the heat conduction problem, established from local failure orientations, based on the stress state of the mechanical problem. To minimize the computational effort, in this paper a new strategy is proposed whereby the analysis for tracking the discontinuity path is restricted to the domain formed by some elements near the crack surface that develops along the loading process. The proposed methodology is validated by performing three-dimensional analyses of basic problems of experimental fractures and comparing their results with those reported in the literature.

건물의 3차원 구조체에 대한 전열해석 프로그램 개발 중 서로 다른 열전도율을 갖는 복합재질 3차원 구조의 비정렬 격자에 대한 전산해석 방법 (Numerical heat transfer analysis methodology for multiple materials with different heat transfer coefficient in unstructured grid for development of heat transfer analysis program for 3 dimensional structure of building)

  • 이주희;장진우;이현균;이용준;이규성
    • KIEAE Journal
    • /
    • 제16권1호
    • /
    • pp.81-87
    • /
    • 2016
  • Purpose: Heat transfers phenomena are described by the second order partial differential equation and its boundary conditions. In a three-dimensional structure of a building, the heat transfer phenomena generally include more than one material, and thus, become complicate. The analytic solutions are useful to understand heat transfer phenomena, but they can hardly be applied in engineering or design problems. Engineers and designers have generally been forced to use numerical methods providing reliable results. Finite volume methods with the unstructured grid system is only the suitable means of the analysis for the complex and arbitrary domains. Method: To obtain an numerical solution, a discretization method, which approximates the differential equations, and the interpolation methods for temperature and heat flux between two or more materials are required. The discretization methods are applied to small domains in space and time, and these numerical solutions form the descretized equations provide approximated solutions in both space and time. The accuracy of numerical solutions is dependent on the quality of discretizations and size of cells used. The higher accuracy, the higher numerical resources are required. The balance between the accuracy and difficulty of the numerical methods is critical for the success of the numerical analysis. A simple and easy interpolation methods among multiple materials are developed. The linear equations are solved with the BiCGSTAB being a effective matrix solver. Result: This study provides an overview of discretization methods, boundary interface, and matrix solver for the 3-dimensional numerical heat transfer including two materials.

엇갈리게 기울어진 충돌제트들에 의한 오목면 상의 열전달 성능해석 (ANALYSIS OF HEAT TRANSFER OF INCLINED IMPINGING JETS ON A CONCAVE SURFACE)

  • 허만웅;이기돈;김광용
    • 한국전산유체공학회지
    • /
    • 제16권2호
    • /
    • pp.11-16
    • /
    • 2011
  • Numerical analyses have been carried out to analyze the three-dimensional turbulent heat transfer by impingement jet on a concave surface with variation of geometric configurations. Three-dimensional Reynolds averaged Navier-stokes equations have been calculated using the shear stress transport turbulent model. The numerical results for heat transfer rate were validated in comparison with the experimental data. The distance between jet nozzles and angle of inclined jet nozzle were selected as the geometric variables. Area-averaged Nusselt numbers on concave surface are evaluated to find the characteristics of heat transfer with the two geometric variables. The heat transfer increases as the distance between jet nozzles increases, and the inclined impinging jets show much better heat transfer performance than the vertical impinging jet.

이차원 탄성 정적 문제를 위한 유한요소법과 경계요소법의 근사 결합 방법 (Approximately Coupled Method of Finite Element Method and Boundary Element Method for Two-Dimensional Elasto-static Problem)

  • 송명관
    • 한국지반신소재학회논문집
    • /
    • 제20권3호
    • /
    • pp.11-20
    • /
    • 2021
  • 본 논문에서는 유한요소법과 경계요소법을 결합하여 기하학적으로 급변 부위가 있는 이차원 탄성 정적 문제에 대하여 효율적이고 정확한 해석 결과를 얻기 위한 유한요소법과 경계요소법의 근사 결합 방법을 제시한다. 이차원 문제의 유한요소로서는 3절점, 4절점 평면응력 요소를 적용하고, 이차원 문제의 경계요소로는 3절점 경계요소를 적용한다. 모델링 단계에서는 우선 전체 해석 대상을 유한요소로 모델링한 후에 기학학적 급변 부위를 경계요소로 모델링 하는데, 유한요소의 모델링을 위하여 정의된 절점을 이용하여 경계요소를 정의한다. 해석 단계에서는 전체 해석 대상에 대하여 유한요소 해석을 우선적으로 수행하고, 이후에 경계요소 해석을 자동으로 수행하는데, 경계부에서의 경계조건은 유한요소 해석 결과인 변위 조건과 응력 조건을 적용한다. 수치예제로서 이차원 탄성 정적 문제인 균열이 있는 평판에 대한 해석 결과를 제시하고 고찰한다.

원통좌표를 이용한 주조공정의 수치해석모델 개발 (Development of a New Simulation Method of Casting Process Based on a Cylindrical Coordinate System)

  • 목진호;박성준;이진호
    • 대한기계학회논문집B
    • /
    • 제28권4호
    • /
    • pp.433-440
    • /
    • 2004
  • Since the numerical analysis was adopted in the mold design, lots of computational methods have been proposed for the simulations of casting processes for the various shaped molds. Today, it is possible to simulate the filling and solidification processes of most casts using the VOF technique. Though the three-dimensional numerical model based on the Cartesian coordinate system can be applied to any shape of cast, it becomes very inefficient when the three-dimensional model is applied to the cast of axi-symmetrical shape since the control volume includes at least 11 of the physical model. In addition, the more meshes should be distributed along the circumferential boundaries of curved shape in the Cartesian coordinate system fur the better results, while such curved circumferential boundary does not need to be considered in the two-dimensional cylindrical coordinate system. This motivates the present study i.e. developing a two-dimensional numerical model for the axi-symmetrically shaped casts. The SIMPLER algorithm, the VOF method, and the equivalent specific heat method have been adopted in the combined algorithm for the flow calculation, the free surface tracking, and the phase change heat transfer, respectively. The numerical model has been applied to the casting process of a pulley, and it was proven that the mesh and time effective calculation was accomplished comparing to the calculation using three-dimensional model.