• Title/Summary/Keyword: Two and Three Dimensional Numerical Analysis

Search Result 552, Processing Time 0.026 seconds

HYDRODYNAMIC SOLVER FOR A TRANSIENT, TWO-FLUID, THREE-FIELD MODEL ON UNSTRUCTURED GRIDS (비정렬격자계에서 과도 이상유동해석을 위한 수치해법)

  • Jeong, J.J.;Yoon, H.Y.;Kim, J.;Park, I.K.;Cho, H.K.
    • Journal of computational fluids engineering
    • /
    • v.12 no.4
    • /
    • pp.44-53
    • /
    • 2007
  • A three-dimensional (3D) unstructured hydrodynamic solver for transient two-phase flows has been developed for a 3D component of a nuclear system code and a component-scale analysis tool. A two-fluid three-field model is used for the two-phase flows. The three fields represent a continuous liquid, an entrained liquid, and a vapour field. An unstructured grid is adopted for realistic simulations of the flows in a complicated geometry. The semi-implicit ICE (Implicit Continuous-fluid Eulerian) numerical scheme has been applied to the unstructured non-staggered grid. This paper presents the numerical method and the preliminary results of the calculations. The results show that the modified numerical scheme is robust and predicts the phase change and the flow transitions due to boiling and flashing very well.

Analysis of Acoustic Propagation using Spectral Parabolic Equation Method (스펙트럴 포물선 방정식 법을 이용한 수중음파 전달해석)

  • Kim, Kook-Hyun;Seong, Woo-Jae
    • The Journal of the Acoustical Society of Korea
    • /
    • v.15 no.2
    • /
    • pp.72-78
    • /
    • 1996
  • This thesis deals with a method to solve a two-and-one-half-dimensional ($2\frac12$ D) problem, which means that the ocean environment is two-dimensional whereas the source is fully three-dimensionally propagating, including three-dimensional refraction phenomena and three-dimensional back-scattering, using two-dimensional two-way parabolic equation method combined with Fourier synthesis. Two dimensional two-way parabolic equation method uses Galerkin's method for depth and Crank-Nicolson method and alternating direction for range and provides a solution available to range-dependent problem with wave-field back-scattered from discontinuous interface. Since wavenumber, k, is the function of depth and vertical or horizontal range, we can reduce a dimension of three-dimensional Helmholtz equation by Fourier transforming in the range direction. Thus transformed two-dimensional Helmholtz equation is solved through two-way parabolic equation method. Finally, we can have the $2\frac12$ D solution by inverse Fourier transformation of the spectral solution gained from in the last step. Numerical simulation has been carried out for a canonical ocean environment with stair-step bottom in order to test its accuracy using the present analysis. With this spectral parabolic equation method, we have examined three-dimensional acoustic propagation properties in a specified site in the Korean Straits.

  • PDF

Analysis of Three-dimensional Nonaxisymmetric Spin-up by Using Parallel Computation (병렬계산에 의한 비축대칭 3차원 스핀업 유동해석)

  • Park, Jae-Hyoun;Choi, Yoon-Hwan;Suh, Yong-Kweon
    • Proceedings of the KSME Conference
    • /
    • 2001.06e
    • /
    • pp.512-517
    • /
    • 2001
  • In this study, spin-up flows in a rectangular container are analysed by using three-dimensional computation. In the numerical computation, we use the parallel computer system of PC-cluster type. We compared our results with those obtained by two-dimensional computation. Effect of velocity and vorticity on the flow is studied. The result shows that two-dimensional solution is in good agreement with the 3-D result. Attention is given to the region where the 3-D flow is significant.

  • PDF

Analysis of Suspended Load using A Two-Dimensional Advection-Diffusion Equation in Coastal Zone (2차원 이송-확산 방정식을 이용한 해안에서의 부유사 해석)

  • Kang, Gyu-Young;Kim, Su-Jin;Cho, Yong-Sik
    • 한국방재학회:학술대회논문집
    • /
    • 2007.02a
    • /
    • pp.177-180
    • /
    • 2007
  • Numerical simulations on the suspended load in the Do jang fish port are carried out. Suspended load is analysed by using the two-dimensional advection-diffusion equation. To describe behaviors of a pollutant in costal zone, a split-operator method is applied to the numerical model. The advection part is first solved by SOWMAC and then the diffusion part is solved by a three-level locally implicit scheme.

  • PDF

Residual Stress Estimation and Deformation Analysis for Injection Molded Plastic Parts using Three-Dimensional Solid Elements (3 차원 입체요소를 사용한 사출성형품의 잔류응력 예측 및 후변형 해석)

  • Park, Keun;Ahn, Jong-Ho;Yim, Chung-Hyuk
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.4
    • /
    • pp.507-514
    • /
    • 2003
  • Most of CAE analyses for injection molding have been based on the Mele Shaw's approximation: two-dimensional flow analysis. in some cases, that approximation causes significant errors due to loss of the geometrical information as well as simplification of the flow characteristics in the thickness direction. Although injection molding analysis software using three-dimensional solid elements has been developed recently, such as Moldflow Flow3D, it does not contain a deformation analysis function yet. The present work covers three-dimensional deformation analysis or injection molded plastic parts using solid elements. A numerical scheme for deformation analysis has bun proposed from the results of injection molding analysis using Moldflow Flow3D. The accuracy of the proposed approach has been verified through a numerical analysis of rectangular plates with various thicknesses in comparison with the classical shell-based approach. In addition, the reliability of the approach has also been proved through an industrial example. an optical plastic lens, in comparison of real experiments.

Numerical Study on Three-Dimensional Flow in a Mixed-Flow Pump for Irrigation and Drainage (양배수용 사류펌프 내 삼차원 유동에 대한 수치적 연구)

  • Kim, Jin-Hyuk;Ahn, Hyoung-Jin;Kim, Kwang-Yong
    • The KSFM Journal of Fluid Machinery
    • /
    • v.13 no.1
    • /
    • pp.17-22
    • /
    • 2010
  • In this paper, numerical study on a mixed-flow pump for irrigation and drainage has been performed based on three-dimensional viscous flow analysis. Reynolds-averaged Navier-Stokes equations with shear stress transport turbulence model are discretized by finite volume approximations and solved by the commercial CFD code ANSYS CFX-11.0. A structured grid system is constructed in the computational domain, which has O-type grids near the blade surfaces and H/J-type grids in other regions. The numerical results were validated with experimental data for the heads and efficiencies at different flow coefficients. The efficiency at the design flow coefficient is evaluated with the variation of two geometric variables related to area of discharge and length of the vane in the diffuser. The results show that efficiency of the mixed-flow pump at the design flow coefficient is improved by the modifications of the geometry.

A Three Dimensional Wheelset Dynamic Analysis considering Wheel-rail Two Point Contact (차륜-레일 2점 접촉을 고려한 3차원 윤축 동역학 해석)

  • Kang, Ju-Seok
    • Journal of the Korean Society for Railway
    • /
    • v.15 no.1
    • /
    • pp.1-8
    • /
    • 2012
  • Wheelset dynamic analysis is a key element to determine the degree of accuracy of railway vehicle dynamics. In this study, a three-dimensional wheelset dynamic analysis is presented in such a way that the precise wheel-rail contact analysis in three-dimension is implemented into the dynamic equations of a wheelset. A numerical procedure that can be used for the analysis of a wheelset dynamics when the wheel-rail two point contact occurs in a cornering maneuver is developed. Numerical solutions of the constraint equations and the dynamics equations of a wheelset are achieved by using Runge-Kutta method. The proposed wheelset dynamic analysis is validated by comparison against results obtained from VI-RAIL analysis.

Numerical Analysis of Heat Flow and Heat Transfer in Flue Channel of Two-Dimensional Ondol Panel Heating System (2차원(次元) 온돌 상난방(床煖房)시스템의 연도내 열유동(熱流動) 및 열전달(熱傳達) 수치해석(數値解析))

  • Kim, Y.D.;Min, M.K.;Lee, S.H.;Kim, W.K.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.6 no.4
    • /
    • pp.337-343
    • /
    • 1994
  • Numerical analysis was applied to a simplified two-dimensional Ondol heating model which consists of heating space on the top of it along with radiant and convective heating floor panel, flue channel in the midway and rectangular underground soil region at the bottom. These three components constitute a system thermally coupled at the top and bottom interfaces of the flue channel. Investigated in the present paper are effects with variations of the Reynolds numbers of 100, 200, and 300, Grashof numbers of $0.1{\times}10^6$ and $0.3{\times}10^6$ and aspect ratios of 15 and 20 on the heat transfer and fluid flow characteristics of two-dimensional Ondol heating model by computer simulation.

  • PDF

Stability analysis of a tunnel excavated in weak rocks and the optimal design for the support pattern (연약지반내 굴착터널의 안정성 평가 및 최적보강설계에 관한 연구)

  • 최성웅;신희순
    • Tunnel and Underground Space
    • /
    • v.7 no.3
    • /
    • pp.191-201
    • /
    • 1997
  • Geological and geotechnical surveys, in general, should precede the excavation to ensure the safety of the tunnel and should be followed up according to the various geological condition during the excavation. However actually the standard support patterns which were decided during the design step used be insisted for the whole excavation steps in spite of the various geological conditions. OO tunnel was excavated with NATM and a support pattern type-V in weak rocks. When the tunnel was excavated up to 25m long, the severe displacement was generated in the portal area and the shotcrete was damaged to make the cracks and the tunnel face was totally collapsed. It might happen owing to the one-day heavy rain, but the exact reason for that accident should be found out and the new optimal support patternt needed. Consequently three dimensional numerical analysis was applied for the evaluation of the cause of the tunnel collapse instead of two dimensional analysis, because three dimensional analysis can show better the real field phenomenon than two dimensional analysis in which the load distribution methods are adopted for the tunnel excavation. We could simulate the actual situations with three dimensional finite difference code and propose the new optimal support patterns.

  • PDF

Numerical Analysis of Shock-Wave Focusing from a Two-Dimensional Parabolic Reflector (2차원 포물형 반사경에 의한 충격파의 촛점형성에 대한 수치해석)

  • 최환석;백제현
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.3
    • /
    • pp.612-623
    • /
    • 1994
  • Shock-wave focusing from a two-dimensional parabolic reflector was simulated using an explicit finite volume upwind TVD scheme. Computations were performed for three different incident shock speeds of $M_s$ = 1.1, 1.2 and 1.3, corresponding to the relatively weak, intermediate, and strong shock waves, respectively. Numerical solutions nicely resolved all the waves evolving through the focusing process. As the incident shock strength increase, a transition was observed in the shock-fronts geometry that was caused by the change in the reflection type of converging shock fronts on the axis of symmetry, from regular-type to Mach-type reflection. The computed maximum on-axis pressure amplification and the trajectories of three-wave intersections showed good agreement with experimental results. The strong nonlinear effect near the focal region which determines the shock-fronts geometries at and behind the focus and at the same time confines the pressure amplification at the focus was clearly revealed from the present numerical simulation.