• Title/Summary/Keyword: Two Phase 6/3 SRM

Search Result 13, Processing Time 0.025 seconds

A Study on the Structure characteristics of two phase 4/3 SRM (2상 4/3 SRM의 구조적 특성에 관한 연구)

  • Bae, Kang-Yul;Oh, Seok-Gyu
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.28 no.5
    • /
    • pp.115-121
    • /
    • 2014
  • The intrinsic simplicity, ruggedness, and simple power electronic drive requirement of a Switched Reluctance Motor(SRM) make it possible to use in many commercial adjustable speed application. The simple magnetic circuit results in a high efficiency drive and low temperature rise, and the drive system provides a good drive characteristics. This paper is provides two phase 4/3 SRM that is similar to two phase 6/3 SRM as aspect to magnetic structure. Although 6/3 SRM does not experience any flux reversal as the flux is in the same direction whether phase A or B is excited, but two phase 4/3 SRM experiences a flux reversal in small part of stator yoke. The flux reversal in two phase 4/3 SRM could be relieved by an adjustment of stator yoke structure. The magnetic analysis and design considerations of the two phase 4/3 SRM have been obtained by the finite element method analysis (FEM).

A Comparative Study on the Structural Characteristics of the Novel Two-Phase 8/6 Switched Reluctance Machine (새로운 2상 8/6 SRM의 구조적 특성에 관한 비교 연구)

  • Lee, Cheewoo;Hwang, Hongsik;Oh, Seok-Gyu
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.2
    • /
    • pp.315-322
    • /
    • 2017
  • This study presents a novel two­phase eight stator poles and six rotor poles (8/6) switched reluctance machine (SRM) that can compensate for the vibration and noise problems of two­phase 6/3 SRM and compare the characteristics of two SRMs. In the case of two­phase 6/3 SRM, the short flux path and the flux direction inside the stator are not reversed, so they have high efficiency characteristics. However, the use of three rotor poles causes problems of vibration and noise because the radial force applied to the rotor poles is not balance. The proposed two­phase 8/6 SRM has advantages of 6/3 SRM such as the flux­reversal­free stator and it can improve vibration and noise by using six rotor poles due to balanced radial force acting on the rotor poles. In order to make a reasonable comparison between two SRMs, the electromagnetic field structure of 8/6 SRM is designed to have equivalent torque characteristic to 6/3 SRM and then the copper loss and core loss are compared and analyzed. Finally, we compare the effieicney of two SRMs using finite element analysis and compare the distribution of radial force acting on the rotor poles based on Maxwell's stress method.

A Study on the Comparison of SRMs with 3 Rotor Poles (3개의 회전자 극을 갖는 SRM의 비교 연구)

  • Bae, Jun-Kyung;Oh, Seok-Gyu
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.28 no.5
    • /
    • pp.92-97
    • /
    • 2014
  • The SRM is a doubly salient, singly excited machine. The torque is developed by the tendency for the magnetic circuit to adopt a configuration of minimum reluctance, i.e. for the rotor to move into in line with the stator poles and to maximize the inductance of the coils excited. It is common practice to combine them into groups of poles which are excited simultaneously; for example, 8/6 SRM (8 stator poles and 6 rotor poles) for 4 phases, 6/4, 12/8 SRM for 3 phases, 4/2, 6/3 SRM for 2 phases. Small number of phases in two-phase SRMs allows more cost savings with regards to the switching devices in the converter. The stator back irons of two phase 6/3 SRM and C-core 4/3 SRM does not experience any flux reversal as the flux is in the same direction whether phase A or B is excited. In this study, the similarities, the differences, and structural characteristics between the two SRMs was studied, The magnetic analysis also has been carried out by the finite element method analysis (FEM).

The Study on Magnetic Characteristics of 2 Phase SRM with Self-Starting Capability (자기동이 가능한 2상 SRM의 자기적 특성에 관한 연구)

  • Oh, Seok-Gyu;Lee, Chee-Woo
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.22 no.9
    • /
    • pp.47-54
    • /
    • 2008
  • Cost reduction requires lowering number of power devices used in the converter driving SRM. This is quite feasible in SRM drive systems than in other drive systems. This paper deals with analysis and simulation of a novel two phase SRM. A novel two phase SRM has high performance, self-starling capability, high efficiency, and low manufacturing cost. Additionally, the stator back iron does not experience any flux reversal as the flux is in the same direction whether phase A or B is excited leading to a greater reduction in core losses. The magnetic analysis and design considerations of the novel two phase SRM have been obtained by the finite element analysis (FEM).

A Study on Comparison of Two phase SRMs (2상 SRM의 비교에 관한 연구)

  • Oh, Seok-Gyu;Lee, Chee-Woo
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.25 no.1
    • /
    • pp.59-63
    • /
    • 2011
  • In small-power applications, variable-speed motors having high efficiency and controllability become more dominant than brushed DC motors. BLDC motors with permanent magnets in the rotor and SRMs directed by reluctance torque due to no permanent magnets have been strongly studied as a candidate. Compared to the BLDC motors, SRMs are more suitable for low-cost applications since the magnetic structure is simple, mechanically robust, and cheap due to no additional excitation in the rotor such as copper wire, aluminum, and permanent magnets. In addition, relatively small number of phases in single and two-phase SRMs allows more cost savings with regards to material in the motor and switching devices in the converter. In this paper, several 2 phase SRMs are compared to a 3 phase 6/4 SRM in terms of flux distribution in key parts of the motors.

Variable Coefficient Inductance Model-Based Four-Quadrant Sensorless Control of SRM

  • Kuai, Song-Yan;Li, Xue-Feng;Li, Xing-Hong;Ma, Jinyang
    • Journal of Power Electronics
    • /
    • v.14 no.6
    • /
    • pp.1243-1253
    • /
    • 2014
  • The phase inductance of a switch reluctance motor (SRM) is significantly nonlinear. With different saturation conditions, the phase inductance shape is clearly changed. This study focuses on the relationship between coefficient and current in an inductance model with ignored harmonics above the order of 3. A position estimation method based on the variable coefficient inductance model is proposed in this paper. A four-quadrant sensorless control system of the SRM drive is constructed based on the relationship between variable coefficient inductance and rotor position. The proposed algorithms are implemented in an experimental SRM test setup. Experimental results show that the proposed method estimates position accurately in operating two/four-quadrants. The entire system also has good static and dynamic performance.

Analysis of Switched Reluctance Motors using Parameters obtained by Finite Element Method (유한요소법으로 계산한 파라메타를 이용한 스위치드 릴럭턴스 모타의 해석)

  • Lee, Joon-Ho;Lee, Sang-Ho;Lee, Ki-Sik
    • Proceedings of the KIEE Conference
    • /
    • 1997.07a
    • /
    • pp.47-50
    • /
    • 1997
  • The FEM(Finite Element Method) can be used to analysis SRM(Switched Reluctance Motor) as it can account for the salient pole geometry of the stator and rotor and the nonlinear properties of the magnetic materials. However, FEM requirers a lot of computer memory and computing time because, the kind of SRM drivers is verity and the switching strategies are various for one SRM driver. In this paper we proposed the method of analysis of a SRM which results are similar to FEM and has very short computing time. The Inductance and torque for each phase current at each rotor position are calculated by using two-dimensional nonlinear FEM analysis. Using the look-up table of inductance and torque and the voltage equations of SRM we obtained the phase current and torque. To verify proposed algorithm, 3 phase 6/4 SRM is analysed and found a good agreement with FEM results. And computing time is about 1/1600 of the FEM analysis.

  • PDF

Vibration and Acoustic Noise characteristic on SRM with compensating winding by two stage commutation (2단계 소호전압방식을 적용한 보상권선형 SRM의 진동.소음특성)

  • 오석규;이종근;최태완
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.6 no.3
    • /
    • pp.250-257
    • /
    • 2001
  • SRM drives generate large vibration and acoustic noise because it is rotated by step pulse mmf and switching commutation mechanism. The main vibration source of SRM drive is generated by rapidly variation of radial force when phase winding current is extinguished for commutation action. So the rapidly variation of radial force is repressed firstly to reduce vibrating force of SRM drive. This paper suggests an SRM excitation scheme using unidirect-short compensation winding to reduce vibration of the motor. The motor is excited by a two stage commutation method during commutation period. This paper suggests an SRM excitation scheme using unidirect-short compensation winding to reduce vibration of the motor. The motor is excited by a tow stage commutation method during commutation period. This reduction effect of vibration is verified with the result obtained in the test of prototype machine.

  • PDF

A Low Cost Position Sensing Method of Switched Reluctance Motor Using Reflective Type Optical-sensors (반사형 광센서를 이용한 저가형 SRM 위치검출기법)

  • Kim S.J.;Yoon Y.H.;Won C.Y.;Kim H.S.
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.10 no.2
    • /
    • pp.148-154
    • /
    • 2005
  • As the exciting point of each phase is determined by the position of rotor, the rotor's accurate position-information is needed for the Switched Reluctance Motor(SRM). When using an absolute-encoder or a resolver, to detect the location of rotor the initial starting is possible, as early sensing of rotor's location is possible. However, this is not appropriate, considering the economical efficiency, and in case of using the incremental-encoder, there's a problem at initial starting as it is not easy to track down the location of rotor at the very beginning. When using Hall-ICs, there's a fault, as it needs a special ring magnet. Considering the initial starting and economical efficiency, the optical sensor technique using a slotted-disk and an opto-interrupter is appropriate, however, this method needs three opto-interrupters and a slotted-disk when using the 6/4 pole SRM. Nevertheless, in this paper, it used only two optical sensors to operate 6/4 pole SRM and made the start up and also forward and reverse operation possible. By excluding the slotted-disc md shortening a optical sensor, it improved the convenience and economical efficiency of the production. Also, as the space for slotted-disc is no more needed, it was able to reduce the size of motor.

Characteristics Analysis of Segmental Rotor Type 3-Phase SRMs (분절회전자형 3상 SRM의 특성해석)

  • Xu, Zhenyao;Lee, Dong-Hee;Ahn, Jin-Woo
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.21 no.1
    • /
    • pp.1-9
    • /
    • 2016
  • In this study, two types of switched reluctance motors (SRMs) with segmental rotors are presented in detail. The first is a 6/5 segmental rotor type, whereas the second is a 12/8 segmental rotor type. Both motor types have the same stator, rotor, and winding configurations. The stator is constructed with special stator poles, namely, exclusively designed exciting and auxiliary poles. The rotor is constructed from a series of discrete segments, each of which is embedded into the nonmagnetic isolator. The windings are only wound on the exciting poles, and no winding is wound on the auxiliary poles. Given these configurations, short flux paths and high flux-linkage utilization rate are achieved in the proposed motors, which may reduce the magnetomotive force requirement and increase the electrical utilization of a machine. To verify the effectiveness of the proposed motors, their characteristics, such as magnetic flux distribution, flux-linkage, torque, radial force, and efficiency, are analyzed and compared with those of a conventional 12/8 SRM. Meanwhile, two prototypes, one for each proposed segmental rotor type, are also designed and manufactured. Finally, the validity of the proposed motors is further verified by test results.