• Title/Summary/Keyword: Two New Subspecies

Search Result 24, Processing Time 0.018 seconds

Fungal flora of Ullung Island (V) -on additional agaric fungi- (울릉도의 균류상 (V) -기타 주름버섯류에 대하여-)

  • Jung, Hack-Sung
    • The Korean Journal of Mycology
    • /
    • v.22 no.2
    • /
    • pp.196-208
    • /
    • 1994
  • Some additional fungi were collected during two field trips to Ullung Island in July and September of 1992. Through the observation of agaric fungi, 36 mushrooms were identified to the species or subspecies and are listed below. Among them, three species and one subspecies, Mycena luteopallens, Mycena macrocystidiata, Amanita hemibapha ssp. similis, and Pluteus petasatus, were confirmed new to Korea and are registered here with descriptions.

  • PDF

Species Diversity of Betaproteobacteria in the Sumunmulbengdui Wetland Area of Jeju Island and Distribution of Novel Taxa (제주도 숨은물벵뒤 습지 서식 Betaproteobacteria의 종다양성 및 신분류군 분포)

  • Shin, Young-Min;Kim, Tae-Ui;Choi, Ah-Young;Chun, Jee-Sun;Lee, Sang-Hoon;Kim, Ha-Neul;Yi, Ha-Na;Jo, Jae-Hyung;Cho, Jang-Cheon;Jahng, Kwang-Yeop;Kim, Kyu-Joong;Joh, Ki-Seong;Chun, Jong-Sik;Lee, Hyune-Hwan;Kim, Seung-Bum
    • Korean Journal of Environmental Biology
    • /
    • v.29 no.3
    • /
    • pp.154-161
    • /
    • 2011
  • The species diversity of Betaproteobacteria in the Sumunmulbengdui Wetland Area of Jeju Island was studied using culture based techniques, and candidates for novel taxa were screened. Twenty two novel bacterial strains belonging to Betaproteobacteria were isolated, which could be assigned to 16 genera of 4 families, namely Burkholderiaceae (3 strains), Comamonadaceae (8 strains), Oxalobacteraceae (5 strains), Neisseriaceae (5 strains), and an unassigned group belonging to Burkholderiales (1 strain) based 16S rRNA gene sequences. The genus Chromobacterium contained three candidates of novel species, and each of the genera Burkholderia, Comamonas, Pelomonas and Herbaspirillum contained two candidates respectively. Through the analysis of membrane fatty acid profiles and physiological properties using API 20NE as well as morphological and cultural properties, each of the isolates was found to form potentially novel species. Brief description of 22 potential candidates for new species or subspecies is given accordingly.

Development of a marker system to discern the flowering type in Brassica rapa crops (배추 속 작물의 개화형 판별 마커 시스템 개발)

  • Kim, Jin A;Kim, Jung Sun;Hong, Joon Ki;Lee, Yeon-Hee;Lee, Soo In;Jeong, Mi-Jeong
    • Journal of Plant Biotechnology
    • /
    • v.44 no.4
    • /
    • pp.438-447
    • /
    • 2017
  • Flowering is one of the most important development traits related to the production of Brassica rapa crops. After planting, a sudden low temperature triggers premature flowering, which leads to a reduction in the yield and quality of harvested production. Therefore, understanding the mechanism of flowering control is important in the agricultural productivity for preventing Brassica rapa crops. Vernalization is generally known as the main factor of flowering in the Brassica plant. However, in the subspecies of Brassica rapa, some accession such as Yellow sarson and Komatsuna display the flowering phenotype without vernalization. Circadian genes, which diurnally regulate plant physiology, have a role for photoperiodic flowering but are related to the regulation of the vernalizarion mechanism. In this report, the 22 B. rapa accession were divided into two groups, vernalization and non-vernalization, and the sequenced circadian gene, BrPRR1s. Among them, the BrPRR1b gene was found to have deletion regions, which could classify the two groups. The PCR primer was designed to amplify a short band of 422bp in the vernalization type and a long band of 451bp in the non-vernalization type. This primer set was applied to distinguish the flowering types in the 43 B. rapa accession and 4 Brassica genus crop, Broccoli, cabbage, mustard, and rape. The PCR analysis results and flowering time information of each crop demonstrated that the primer set can be used as marker to discern the flowering type in Brassica crops. This marker system can be applied to the B. rapa breeding when selecting the flowering character of new progenies or introducing varieties at an early stage. In addition, these results displayed that the circadian clock genes can be a good strategy for the flowering control of B. rapa crops.

A Morphological Study of Bamboos by Vascular Bundle Sheath (대나무류(類)의 유관속초(維管束鞘)에 의(依)한 형태학적(形態學的) 연구(硏究))

  • Kim, Jai Saing
    • Journal of Korean Society of Forest Science
    • /
    • v.25 no.1
    • /
    • pp.13-47
    • /
    • 1975
  • Among the many species of bamboo, it is well known that the dwarf-type is widely distributed in the tropical regions, and the slender type in temperated zone. In the temperated zone the trees have extensively differentiated into one hundred species in 50 genera. In many oriental countries, the bamboo wood is being used as a material for construction and for the manufacture of technical instruments. The bamboo shoot is also regarded as a good and delicious edible resource. Moreover, recent medical investigation verifies that the sap of certain species of the bamboo is an antibiotic effect against cancer. Fortunately, it is very easy to propagate the bamboo trees by using cutting from southeastern Asian countries. This important resource can further be used as a significant source of pulp, which is becoming increasingly important. The classification system of this significant resource has not been completely established to date, even though its importance has been emphasized. Initiated by Canlevon Linne in the 18th century, a classification method concerning the morphological characteristics of flowers was the first step in developing a classification. But it was not an easy task to accomplish, because this type of classification system is based on the sexual organs in bamboo trees. Because the bamboo has a long life cycle of 60-120 years and classification according to this method was very difficult as the materials for the classification are not abundant and some species have changed, even though many references related to the morphological classification of bamboo trees are available nowadays. So, the certification of bamboo trees according to the morphological classification system is not reasonable for us. Consequently, the classification system of bamboo trees on the basis of endomorphological characteristics was initiated by Chinese-born Liese. And classification method based on the morphological characteristics of the vascular bundle was developed by Grosser. These classification methods are fundamentally related to Holltum's classification method, which stressed the morphology of the ovary. The author investigated to re-establish a new classification method based on the vascular sheath. Twenty-six species in 11 genera which originated from Formosa where used in the study. The results obtained from the investigation were somewhat coordinated with those of Crosser. Many difficulties were found in distinguishing the species of Bambusa and Dendrocalamus. These two species were critically differentiated under the new classification system, which is based on the existence of a separated vascular bundle sheath in the bamboo. According to these results, it is recommended that Babusa divided into two groups by placing it into either subspecies or the lower categories. This recommendation is supported by the observation that the evolutional pattern of the bamboo thunk which is from outward to inward. It is also supported by the viewpoint that the fundamental hypothesis in evolution is from simple to complex. There remained many problems to be solved through more critical examination by comparing the results to those of the classification based on the sexual organs method. The author observed the figure of the cross-sectional area of vascular trunk of bamboo tree and compared the results with those of Grosser and Liese, i.e. A, $B_1$, $B_2$, C, and D groups in classification. Group A and $B_2$ were in accordance with the results of those scholars, while group D showed many differences, Grosser and Liese divided bamboo into "g" type and "h" type according to the vascular bundle type; and they included Dendrocalamus and Bambusa in Group D without considering the type of vascular bundle sheath. However, the results obtained by the author showed that Dendrocalamus and Bambusa are differentiated from each other. By considering another group, "i" identified according to the existence of separated vascular bundle sheath. Bambusa showed to have a separated vascular bundle sheath while Dendrocalamus does not have a separated vascular bundle sheath. Moreover, Bambusa showed peculiar characteristics in the figure of vascular development, i.e., one with an inward vascular bundle sheath and the other with a bivascular bundle sheath (inward and outward). In conclusion, the bamboo species used in this experiment were classified in group D, without any separated vascular bundle sheath, and in group E, with a vascular bundle sheath. Group E was divided into two groups, i.e., and group $E_1$, with bivascular sheath, and group $E_2$, with only an inward vascular sheath. Therefore, the Bambusa in group D as described by Grosser and Liese was included in group E. Dendrocalamus seemed to be the middle group between group $E_l$ and group $E_2$ under this classification system which is summarized as follows: Phyllostachys-type: Group A - Phyllostachys, Chymonobambus, Arundinaria, Pseudosasa, Pleioblastus, Yashania Pome-type: Group $B_2$ - Schizostachyum, Melocanna Hemp-type: Group D - Dendrocalamu Bambu-type: Group $E_1$ - Bambusa ghi.

  • PDF