• Title/Summary/Keyword: Two Cylinders

Search Result 400, Processing Time 0.028 seconds

Hydrodynamic interaction between two cylinders in planar shear flow of viscoelastic fluid

  • Jung, Hyun-Wook;Daejin Won;Kim, Chongyoup
    • Korea-Australia Rheology Journal
    • /
    • v.14 no.4
    • /
    • pp.203-207
    • /
    • 2002
  • Particle-particle interaction is of great importance in the study of suspension rheology. In this research we have investigated the hydrodynamic interaction between two identical cylinders in viscoelastic fluids numerically as a model problem for the study of viscoelastic suspension. We confine two neutrally buoyant cylinders between two parallel plates and impose a shear flow. We determine the migration velocity of two cylinders. The result shows that cylinders move toward or away from each other depending upon the initial distance between them and that there is an equilibrium distance between two cylinders in viscoelastic fluids regardless of the initial distance. In the case of Newtonian fluid, there is no relative movement as expected. The results partly explain the chaining phenomena of spherical particles in shear flows of viscoelastic fluids.

A Numerical Study of Natural Convection in a Square Enclosure with two Hot Circular Cylinders (두 개의 뜨거운 원형 실린더가 존재하는 사각형 실린더 내부의 자연대류에 관한 수치적 연구)

  • Park, Seong-Hyun;Park, Yong-Gap;Ha, Man-Yeong;Yoon, Hyun-Sik;Son, Chang-Min
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.24 no.3
    • /
    • pp.247-255
    • /
    • 2012
  • Numerical calculations are carried out for the natural convection in a square enclosure with two hot cylinders induced by temperature difference between a cold outer rectangular cylinder and two hot circular cylinders. A two-dimensional solution for unsteady natural convection is obtained, using the immersed boundary method (IBM) to model two inner circular cylinders based on finite volume method, for different Rayleigh numbers varying over the range of $10^3$ to $10^5$. The study goes further to investigate the effect of the location of two cylinders on the heat transfer and fluid flow. The location of inner circular cylinders is changed vertically along the center-line of square enclosure. The changes of heat transfer quantities have been presented.

Flow interference between two tripped cylinders

  • Alam, Md. Mahbub;Kim, Sangil;Maiti, Dilip Kumar
    • Wind and Structures
    • /
    • v.23 no.2
    • /
    • pp.109-125
    • /
    • 2016
  • Flow interference is investigated between two tripped cylinders of identical diameter D at stagger angle ${\alpha}=0^{\circ}{\sim}180^{\circ}$ and gap spacing ratio $P^*$ (= P/D) = 0.1 ~ 5, where ${\alpha}$ is the angle between the freestream velocity and the line connecting the cylinder centers, and P is the gap width between the cylinders. Two tripwires, each of diameter 0.1D, were attached on each cylinder at azimuthal angle ${\beta}={\pm}30^{\circ}$, respectively. Time-mean drag coefficient ($C_D$) and fluctuating drag ($C_{Df}$) and lift ($C_{Lf}$) coefficients on the two tripped cylinders were measured and compared with those on plain cylinders. We also conducted surface pressure measurements to assimilate the fluid dynamics around the cylinders. $C_D$, $C_{Df}$ and $C_{Lf}$ all for the plain cylinders are strong function of ${\alpha}$ and $P^*$ due to strong mutual interference between the cylinders, connected to six interactions (Alam and Meyer 2011), namely boundary layer and cylinder, shear-layer/wake and cylinder, shear layer and shear layer, vortex and cylinder, vortex and shear layer, and vortex and vortex interactions. $C_D$, $C_{Df}$ and $C_{Lf}$ are very large for vortex and cylinder, vortex and shear layer, and vortex and vortex interactions, i.e., the interactions where vortex is involved. On the other hand, the interference as well as the strong interactions involving vortices is suppressed for the tripped cylinders, resulting in insignificant variations in $C_D$, $C_{Df}$ and $C_{Lf}$ with ${\alpha}$ and $P^*$. In most of the (${\alpha}$, $P^*$ ) region, the suppressions in $C_D$, $C_{Df}$ and $C_{Lf}$ are about 58%, 65% and 85%, respectively, with maximum suppressions 60%, 80% and 90%.

Wake galloping phenomena between two parallel/unparallel cylinders

  • Kim, Sunjoong;Kim, Ho-Kyung
    • Wind and Structures
    • /
    • v.18 no.5
    • /
    • pp.511-528
    • /
    • 2014
  • The characteristics of wake galloping phenomenon for two parallel/unparallel circular cylinders were investigated via wind tunnel tests. The two cylinders were initially deployed in parallel and wake galloping phenomena were observed by varying the center-to-center distance. The effect of an unparallel arrangement of two cylinders was next investigated by fixing the spacing ratio of one side of the cylinders at 5.0D and the other side at 3.0D, in which D represents the diameter of the cylinder. For the unparallel disposition, the 5.0D side showed a small, limited vibration while the 3.0D side produced much larger amplitude of vibration, resulting in a rolling motion. However, the overall amplitude appeared to decrease in unparallel disposition when compared with the amplitude of the 3.0D - 3.0D parallel case. This represents the mitigation effect of wake galloping due to the unparallel disposition between two cylinders. Flow visualization tests with particle image velocimetry were conducted to identify flow fields between two cylinders. The test results demonstrate the existence of a complex interaction of the downstream cylinder with the shear layer generated by the upstream cylinder. When the spacing ratio was large enough, the shear layer was not observed and the downstream cylinder showed only limited random vibration.

A Study of Flow Characteristics of Two Oscillating Cylinders (진동하는 두 개의 실린더 주위의 유동특성에 관한 연구)

  • Lee, Dae-Sung;Yoon, Hyun-Sik;Ha, Man-Yeong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.6 s.261
    • /
    • pp.566-573
    • /
    • 2007
  • Flows around two oscillating cylinders in side-by-side arrangement at Re=185 are simulated using an immersed boundary method. The cylinders oscillate vertically in opposite directions in uniform cross-flow. We describe flow patterns, drag and lift forces by varying distance between two cylinders $(1.4{\leq}g{\leq}2.2,\;1.0{\leq}g{\leq}1.8)$ and oscillating frequency ratios $(f_e/f_o=0.8,\;f_e/f_o=1.0\;and\;f_e/f_o =1.2)$. Wake patterns, drag and lift coefficients are affected by both of frequency ratio and gap between two cylinders. Near wakes of each case are classified with the definition of previous studies.

Theoretical Investigation on the Singularity System to Represent Two Circular Cylinders in an Inviscid Flow

  • Lee, D.K.
    • International Journal of Ocean Engineering and Technology Speciallssue:Selected Papers
    • /
    • v.3 no.1
    • /
    • pp.8-13
    • /
    • 2000
  • The singularity system to represent two circular cylinders poised under different ambient flow fields is considered in the present research. The singularity system, being composed of a series of singularities, has to be truncated for numerical calculations. A rational criterion to determine how many terms of this series should be retained to maintain the prescribed accuracy is provided through analysis of the converging property of the series. A particular emphasis is put to how to deal with the discrete vortex model of a boundary layer, this possibility being the basis for the development of a tool to simulate vortex shedding from a structure composed of two circular cylinders. The principle to obtain the present singularity system can be applied to more-than-cylinders structure. Only th series become much more complex with increase of the number of cylinders.

  • PDF

Numerical simulation of flow around two circular cylinders in various arrangements

  • VU, HUY CONG;HWANG, JIN HWAN
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.334-334
    • /
    • 2015
  • The results of flow feature around two circular cylinders in various arrangements are carried out using two-dimensional simulation at Reynolds number of 200. In this work, time-averaged fluid force acting on the upstream and downstream cylinders were calculated for staggered angle ${\alpha}=0{\sim}90^{\circ}$ in the range of L/D = 1.1~5, where ${\alpha}$ is the angle between the free-stream flow and the line connecting the centers of the cylinders, L is centre-to-centre distance and D is cylinder diameter. The dependence of magnitudes and trends of fluid force coefficient on the spacing ratio L/D and ${\alpha}$ are discussed. In all arrangements of two cylinders, tandem arrangement (${\alpha}=0^{\circ}$) is the case produced a minimum drag coefficient for downstream cylinder. Moreover, the locations of separation and stagnation points or pressure coefficient on surface of the cylinder were examined. Acknowledgement: "This research was a part of the project titled 'Development of integrated estuarine management system', funded by the Ministry of Oceans and Fisheries, Korea."

  • PDF

Wake Patterns of Two Oscillating Cylinders

  • Lee, Dae-Sung;Ha, Man-Yeong;Yoon, Hyun-Sik
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2006.12a
    • /
    • pp.78-85
    • /
    • 2006
  • Flows around two oscillating cylinders in side-by-side arrangement at Re=185 are simulated using immersed boundary method. The cylinders oscillate vertically with prescribed sinusoidal function in opposite directions in uniform cross-flow. Flow patterns and drag & lift forces are described by varying distance between two cylinders and oscillating frequency. Time series of flow patterns are investigated along with corresponding drag k lift coefficients.

  • PDF

Reynolds-number Effect on the Flow Past Two Nearby Circular Cylinders (두 개의 원형 실린더를 지나는 유동의 레이놀즈 수 효과)

  • Lee, Kyong-Jun;Choi, Choon-Bum;Yang, Kyung-Soo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.32 no.1
    • /
    • pp.30-38
    • /
    • 2008
  • As a follow-up of our previous studies on flow-induced forces on two identical nearby circular cylinders immersed in the cross flow at Re=100 and flow patterns past them,$^{(1,2)}$ we present Reynolds-number effects on the forces and patterns by further computing flows with Re=40, 50, 160. We consider all possible arrangements of the two circular cylinders in terms of the distance between the two cylinders and the angle inclined with respect to the main flow direction. Collecting all the numerical results obtained, we propose contour diagrams for mean force coefficients and their rms of fluctuation as well as for flow patterns and Strouhal number for each Re. These diagrams shed light on a comprehensive picture on how the wake interaction between the two cylinders alters depending on Re.

Flowfield Calculation around Two Circular Cylinders by a Discrete Vortex Method (이산와법에 의한 2원주 주위의 유동장 수치계산)

  • Ro Ki-Deok;Kang Ho-Keun;Choi Hyeong-Doo
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.345-348
    • /
    • 2002
  • The Flow patterns around two cylinders in various arrangements were studied by a discrete vortex method. The flow for the surface of each cylinder was represented by arranging bound vortices at adequate intervals. The viscous diffusion of fluid was represented by the random walk method. The vortex distributions, streaklines, timelines and velocity vectors around two cylinders were calculated for centre-to-centre pitch ratios of $P/D=1.5 and 2.5$, attack angles of ${\alpha}=0^{\circ},\;30^{\circ},\;60^{\circ}\;and\;90^{\circ}$, and Reynolds number of Re=1200. The results of simulation correspond to the photographs by flow visualization and the flow intereference between two cylinders in various arrangements was clearly visualized by a numerical simulation.

  • PDF