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ABSTRACT The singwlaruy svsiem fo represent two clrcular cylinders poised under differemt ambient flow fields is considered in the
present reseqrch. The sigularity system, being composed of a series qf singularities, has to be truncated for numerical calculations. A

rafiencl criterion 1o determine how many terms of this series should be retoined to maintain the prescribed accuracy is provided

through analvsis of the convergg property of the series.

A particular emphasis is put 10 how to deal with the discreie vortex model of a boundary layer, this possibility bewng the basis for

the development of a o0l to simulate vortex shedding from o structure composed of two circilar cylinders.
The principle 1o obtawn the present Singularity systewm can be apphed to more-than-two-cylinders structure. Only the series become

much more complex wih wmerease of the number of cylinders.

1. Introduction

When a eylinder  is
two-chmensional  irvotational  flow fleld the complex potential is

single  circular present in  the
defined and the singularity system representing the cylinder can
be  readily found. The Milne-Thomson's

proves to be an efficient tool in this process il used with some

circle  theorem(1)
care

However, when therc are more than one circular cylinders in
the flow field, the singularity system to represent each cylinder
cannot be obtained at a glance due to the interactions between the
cylinders, The circle theorem can still be applied for one
cylinder at a particular stage but the result accompanies violation
of the boundary condition on the other cylinder. This fact makes
it more comvenient 10 compose the singularily system with the
concept of image  singulwity than with help of the circle
theorem,

Only the case of two circular cylinders has been considered in
lhe present study because this is the basic case in that the
principle improvised herein can be applied without alteration to
other cases with even more circular cylinders. However, the
complexity of the singularily system prows extremely tapidly with
increase of the number of the cylinders.

The knowledge of the potential flow m the two-dimensional
flow field with mudtiple circular cylinders is mecessary in
connection with several contexts. The potential flow 1iself can be

of some value in its own sake or as the basis for further

* ‘This work was supported by UOU reseasch promotion fund in
1997

theoretical and/or numerical apalysis. Another good examples may
be found in the simulation of vortex shedding from multiple
cylinders hy discrele vortex metbod. The possibility of this latter

applicaiion has in fact been the motivation of the present study.

2. The basic complex potentials

Ler us cite here for the later use some well known complex
potentials(?) describing a few basic flow fields:

uniform streatn | glz)= We "'z 2.1

vortex located at ¢ . ;a(z)=——é% log(z—1) (2.2)
]

dipole located at &€ ; @lz)=—pu ze_ z 23

Now, suppose that we introduce a cylinder of radins a in each
of these flow fields. Application of the circle theorem gives us
the following results,

1 Basic case [ ; a cylinder in uniform stream
* the complex potential

Wx+al

plz)= We ™ 2~ Wa'—~< — (2.4)

* the image system ; cme dipole

strength @ p= Wa®
location ; the center of the cylinder
axis v A=t

2) Basic case II ; a cylinder with its center at z, in the flow
field created by a vortex of the strength I'
* the complex potential
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#l(2) ==L log (a5 —log(z— )
+loglz— sl
* the image system ; two vorlices
strengths ; I",=—-1I, [,=T

2.3

b=z,
3) Basic case III ; a cylinder with its center at the origin in the
flow field created by a dipole of the strength p and the axis
totated an angle 5 (rom the x-coordinate

* the complex potential

locations 3 &,= g°/¢,

el’ﬁ.

8
A= w g - i e 2.6)

with =ae?
* the image system ; one dipole
strength 3 ¢, =4 (a/0)*
Jocation ; £,— a*/&
axis ; Ai=at28-7
4) Basic case IV ; a cylinder located at the origin with a vortex

shed from it
* the complex potential

@(z)=—%l log(z— ) — log(e— £;)] 2.7
* the image system ; one vortex

strength ; I',=—1

location ;  &,= a*/¢,

{
--—-»fhj-[
v ¢

Figure. 1 Uniform flow

3. Two cylinders in a uniform flow

Let us consider the potential flow around two circular cylinders
of different radii arranged as shown in Figure 1 and try to satisfy
the boundary condition on the surface of the both cylinders. The
process may be best explained in a step by step fashion as
follows.

(1) the initial step
Each cylinder is represented by a dipole as described in the

basic case ] as if it exists alone in the oniform flow field. Thus
we have;
* for the cylinder 1
strength ; g —= WA
position ; & ,=
axis y Bp=nteo
* for the cylinder 2
sirength ; wgp= We*
position ; £=—14f
axis ; Ag=nta
(2) the first step
The dipoles introduced in the initial step changes the natwe
of the external flow with respect w each cylinder, bringing the
necessity of the image dipole according to the concept of the

basic caselll.
* for the cylinder 1
swength 3 ppy= gy A%/ (4] Exl)?
position , £y, = AZ/( Eypti )+
axis s tu=r—ea
* for the cylinder 2
strength § gy = gy @/ ({1 El)?
position ; Eyny= a®/{ Ep—2 )—il
axis  Bog=m—0
(3) the second step
The dipoles of the above step further modifies the external
flow with regard to each cylinder. The boundary econdition
demands the imege dipole within each cylinder to match the
dipole newly iniroduced in the first step within the other cylinder.
The chamcteristics of the required dipoles are:
* for the cylinder 1
strength 5 g, = wq A% (4] &5)) 2
position ; S,= A%/( &g+ i )4 i
» Bp=rta
* for the cylinder 2
strength ; ppw—= gp a?/ (I+] £4D°3
position ; Eg= a®/{ &, — il )—il
axis  ; Ap=—nta
(4) the third step

axis

This process continues indefinitely. Thus the image singularity
systemw is composed of a series of infinite number of dipoles
lined up on a segment of the imaginary axis within each circle. Tt
is w0 be noted that the dipcle strength diminishes as the above
step of process advances.

The complex potential describing the flow field is then
expressed, after nondimensionalized with respect to the free stream



10

speed W and the radius .4 of the major cylinder, as follows.

wlz)= e "z+ p,(2) (3.1)

where @ ,{z} denotes the complex potential due to the series of

dipoles and is expressed as:

2 g

o l2)= uy fom +

4o (3.2)

B 1
where g= pragoy, (| Eaep—as/2)°

2
¥

Ao B e s )

fap=1 py= ¥
En=1/2, Exy=—135/2
s=2l{A, r=alA

4. Uniform flow with the shed
vortices

Suppose that the vortex shedding is simulated by discrete
vortices within the approximation of the potential flow modelling,
To start with, consider a particular single vortex shed from one
of the cylinders as shown in Figure 2. Following the principle of
the basic casel¥, an image vorlex appears at the inverse point
these two  vortices to be
respectively met by the twe image vortices within the other
cylinder. Then these latter two vortices call for still further two

within the cylinder. Now, have

image vortices within the first cylinder. This process continues
indefinitely and may be explained again in a step by step fashion.

radius 1

—+
|

¥ sf2
z
sj2
el |
—_—
radiLE s

Figure, 2 Uniform flow with a vortex

. LEE

The total by the
superposition of the complex potential representing the uniform

flow about the cylinders and that due to these series of the

complex  potential  would  be  given
vortices.
plz)= e z+ p(2)+ ¢, (2 (4.1)

@,(2) coming from the series of the vortices lakes the

following form when nondimensionalized.

e === log(z—0) (42
+—§.§[ loglz— &) —logla— {pp) +-]
+ 2l Llog(e— £) —log(z— £z) ]

where &= c+ts/2, Lp= cou—1s/2 4.3

{1 and &5, denote the position of the imapge vortices within
the cylinder 1 and the cylinder 2 respectively, and ¢, and ¢y,
represent the complex position vectors of each of these image
vortices telative to the center of the respective cylinder it belongs

to and are given by;

2

1 ¥
cp=—=—————, cy=———1—— 4.4
* Eopey +15/2 # E - — /2 (44)

with £yp= Eyp=1¢

When there are N, and N, vortices in the flow field shed

respectively from the cylinder 1 and the cylinder 2, the complex
potential would be given as

plz)= e "zt p4(2)

9 AN

+ 3 2 euln (D ()

=1

(4.3)

in which o,(z (17, {(,) is just o,(z) of eq(d2) with
I and ¢ replaced respectively by (1) , and (&) .

5. Truncation of the infinite series

5.1 Truncation of the series for ¢,

For this purpose, it would be sufficient to consider the series
of p's rather than ¢, itself and, moreover, only the series of
£'s within either series. Let this series be denoted by S ,, that
is,

.1
(3.2)

S;t= #UJ" Iul+“'+ #ryzf1+ R,Um

where R,um: #m+l"!m+l+"'

Tt can be recognized withowt difficulty that this series most
slowly converges when the two cylinders have the same radius,
ie. when »=1. If so, p’s are expressed as:

,u,e=11j1g§ for k=1,2, with p,=1 (5.3)
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(5.4

and By = k==
If the cylinders are not In contact, § is greater than 2 and hence

g2 e iy for A=1,2, 3
From these inequalities, we can deduce that
1
7 = 3.
R;zm< [ (s—11% -] ](3_1)2(7» 1) (5.6)

Equating the right hand side of this expression to a certain
prespecified small mummber &, we can fix the number of terms
M, to be retained to keep the sum of the neglected terms

within the desired error bound.

logl e,5{s—2)]
M,—1<1- 2ogls—1) =M,

(5.7
5.2 Truncalion of the series for ¢,

Consider the series for @ ,{z) excluding the external voriex
term and the two leading image voriex terms. The remaining

series ¢can be expanded as the following,

ey il A { (a bt

7 2= 2?1’{[2_ Ep o 2 (z— §12)2+ ]

oLy (& §l4)2
+[z_ fu  2{z— 514}2+ ]+ ] 58

i A fo (2 §o)?

ZJI'“ z2— sz+2(2_ 522)2+ ]

A Eay (age)® 1.

+[2ﬁ o 2 (2— §31)2+ ]+ ]

where & Ep= §igen— $u

A= Loy — Sm (59)

The inverse poimts &, and &, In eqf42) and the above

equations have the following properties

Cue Qoo ad  fye wgoy {3.10)

where 2, ; the image region of the region w (.

@, ; the image region of the region 2,

£2y ; the inner region of the cylinder |

@ 5 the inner region of the cylinder 2
Since a subregion will be mapped, according to the circle
theorem, Into a sub-image region, it is not difficult to see that

.ch .Q(é,l), W Wy (511)

and, hence, the absolute values of 4 £, and A &y, are smaller
than unity.

Now, for determination of the tnmcation pesition of the series
eq (3.8) it may be sufficient to consider the following series only,

Slu# A §12+'"+A é-’l(Em)+ Rlu(Zm} (5-12)

where R ,,= Elé £ amr (5.13)

in view of the fact that the series comprised of the first order

terms  converges most slowly. We may think of 5, only
because, in fact, the same conclusion is obtained from the
consideration of the series composed of & §,.

ci; and ¢g, as defined by eq.(4.4) wke a form of continued
fraction. Tnserting eq.(4.3) imo eq.(5.9) and making use of this

property we have, after some manipulation,

& Lun zﬁn —
ALy | [ craen copenf?]

for k=23,
The properties expressed as eq.{5.1l) means that

(5.14)

I el I I e ygerpl max

and | gl O | ol (5.15)

| c1,) and | ¢yl become greatest either when &= {(s/2 —1);
or when {=—1(5/2—7); and we have the maximum values for

[ epl and | ¢yl

@

£ (5.16)

max 5—1

1 el m=_s—?" | cml

The inequalities shown by €q.(5.15) affirm that

<2 =]

Suppose a certain small number &, is specified to the right hand

1 £ otom (5.17)

A L

side of the above equation, that is,

[_é_]gm 1 =
—A—13 | 1= [#ls—nG-DIF =*

(5.18)

The truncation position Zm can be determined from this
equation as the smallest even number just greater than the value
satisfying the equation. In view of the definition of A £, let
by M, Then M, is
determiined as the smallest odd number satisfying the following
inequality.

log{ £,(1— [t/(s—r}s—1)]?%)
log [#/(5— »(s—1)]

us denote 2m so obtained plus 1

6. The truncated complex potential

The exposition of the previous section makes ihe truncated
version of eq.(4.1) take the following forny

4 2 ‘w
pla)= e “z+ Zl guﬂm

P (=1 %a

1
z— £ p
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—%{ loglz— (£ ,]

' Mﬂ
+[ Z}l El (1) ¥ log(z— £p)
+logla— Cgopin )l

(6.1)

where p ; 1 or 2 according to the cylinder from which the vortex
is shed.

The last term in the curly bracket is required because the
image vortices appear as a pair at all the stages or, in other
words, t0 make the total circulation vanish.

7. Calculated examples

Streamlines obtained from the present investigation are shown
in the Appendix for a number of different flow situations. Tn each
situation, the plotted region is covered by a prid system and the
value of the complex potential is calculated at every nodal point.
Then the streamlines are generated by fracing the contours of
constant value of the stteam function.

The employed mesh size is typically 0.02 in both x- and
y-direction bt with more dense nodes at the adjacent region of
the cylinders. The seres were iruncated using 00001 as the

truncation parameter for both ¢, and £,.

—\

%

i

£¥

=08 §=22 o=—30

Figure. 3 Uniform flow

shows  the uniform
approaching the cylinders with the angle @=-30° . Figure 4
shows the streamlines when there is a single vortex, supposedly
shed from the major cylinder, at the position (1.2, 1.6) with the
center of the major cylinder at (0,1.2). In this case, the stream
function was nondimensionalized with respect to the vortex

Figue 3 streamlines of a streatn

stength. The other parameters are shown in the figure. Figure 5
shows the case of two cylinders introduced in the flow field that
has been created by a vortex. This is the situation stipulated by
the Milne-Thomson’s cirele theorem. The computational parameters
have the same values as those of Fgure 4. The difference
between these two cases is that the total vortex strength in the
flow field of the former case is nil whereas that of the latter is
the strength of the vortex. When a umiform flow with the
approaching angle z=30" is superposed to the situation of Figure
4, we have the streamline distribution shown in Figure 6. Only
the nondimensional vortex strength is an additional parameter and
has been set to 5.0. This case constituies the basic building block
in applying the present method to the vortex shedding simulation
with multiple discrete vortices.

i

=07 =24 (=12, 1..6)
Figure. 4 Two cylinders with a single vortex

=07 s=24 (=12, 1.6)
Figure, 5 Flow by a vortex
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=07 s=24 1=(12, 1.6)
Figure. 6 Unifarm flow and 2 single vortex

8. Conclusions

The presented streamlines seem to provide sufficient ground w
believe that the suggested way of tackling the problem is truly
reliable.

Treatment of the series in connection with determining the

truncation position right have at first sight appeared rather rough.
If it were concemed with converging property of the series
themselves, rigor is of course & crucial factor to be respected. But
to find the tnmeation position only, it seems o be justifiable that
the present treatment be adequate enough, In fact, the comment
may be added that an appreciable margin can be expected if the
suggested way of truncation is employed to acquire the accuracy
in mind.

The same principle of building up the image singularity system
can be extended to the situation of more than two circular
cylinders placed in any arbitrary fashion. From practical point of
view, only the complexity grows almost prehibitively with
increase of the number of cylinders. However, if the fmage
singularity system is sought through analytical means there can be
ne altemative other than the present way of approaching the
problem.
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