• 제목/요약/키워드: Two Circular Cylinder

검색결과 255건 처리시간 0.025초

Reynolds number effect on the flow past two tandem cylinders

  • Derakhshandeh, Javad Farrokhi;Alam, Md. Mahbub
    • Wind and Structures
    • /
    • 제30권5호
    • /
    • pp.475-483
    • /
    • 2020
  • This work investigates Reynolds number Re (= 50 - 200) effects on the flows around a single cylinder and the two tandem (center-to-center spacing L= L/D = 4) cylinders, each of a diameter D. Vorticity structures, Strouhal numbers, and time-mean and fluctuating forces are presented and discussed. For the single cylinder, with increasing Re in the range examined, the vorticity magnitude, Strouhal number and fluctuating lift all monotonically rise but time-mean drag, vortex formation length, and lateral distance between the two rows of vortices all shrink. For the two tandem cylinders, the increase in Re leads to the formation of three distinct flows, namely reattachment flow (50 ≤ Re ≤ 75), transition flow (75 < Re < 100), and coshedding flow (100 ≤ Re ≤ 200). The reattachment flow at Re = 50 is steady. When Re is increased from 75 to 200, the Strouhal number of the two cylinders, jumping from 0.113 to 0.15 in the transition flow regime, swells to 0.188. The two-cylinder flow is more sensitive to Re than the single cylinder flow. Fluctuating lift is greater for the downstream cylinder than the upstream cylinder while time-mean drag is higher for the upstream cylinder than for the other. The time-mean drags of the upstream cylinder and single cylinder behaves similar to each other, both declining with increasing Re.

Reynolds and froude number effect on the flow past an interface-piercing circular cylinder

  • Koo, Bonguk;Yang, Jianming;Yeon, Seong Mo;Stern, Frederick
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제6권3호
    • /
    • pp.529-561
    • /
    • 2014
  • The two-phase turbulent flow past an interface-piercing circular cylinder is studied using a high-fidelity orthogonal curvilinear grid solver with a Lagrangian dynamic subgrid-scale model for large-eddy simulation and a coupled level set and volume of fluid method for air-water interface tracking. The simulations cover the sub-critical and critical and post critical regimes of the Reynolds and sub and super-critical Froude numbers in order to investigate the effect of both dimensionless parameters on the flow. Significant changes in flow features near the air-water interface were observed as the Reynolds number was increased from the sub-critical to the critical regime. The interface makes the separation point near the interface much delayed for all Reynolds numbers. The separation region at intermediate depths is remarkably reduced for the critical Reynolds number regime. The deep flow resembles the single-phase turbulent flow past a circular cylinder, but includes the effect of the free-surface and the limited span length for sub-critical Reynolds numbers. At different Froude numbers, the air-water interface exhibits significantly changed structures, including breaking bow waves with splashes and bubbles at high Froude numbers. Instantaneous and mean flow features such as interface structures, vortex shedding, Reynolds stresses, and vorticity transport are also analyzed. The results are compared with reference experimental data available in the literature. The deep flow is also compared with the single-phase turbulent flow past a circular cylinder in the similar ranges of Reynolds numbers. Discussion is provided concerning the limitations of the current simulations and available experimental data along with future research.

두 개의 원형 실린더 주위의 유동 패턴 (Flow pattern in the presence of two nearby circular cylinders)

  • 이경준;양경수
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회B
    • /
    • pp.2851-2856
    • /
    • 2007
  • Flow patterns in the presence of two identical nearby circular cylinders at =100 were numerically studied. We considered all possible arrangements of the two circular cylinders in terms of the distance between the two cylinders and the inclination angle with respect to the direction of the main flow. Eight distinct flow patterns were identified based on vorticity contours and streamlines, which are Base-Bleed, Biased-Base-Bleed, Shear- Layer-Reattachment, Induced-Separation, Vortex-Impingement, Flip-Flopping, Modulated Periodic, and Synchronized-Vortex-Shedding. Collecting all the numerical results, we propose a general flow pattern diagram for flows past the two cylinders. The perfect geometrical symmetry implied in the flow configuration allows one to use this diagram to distinguish flow patterns in the presence of two identical circular cylinders arbitrarily positioned in physical space with respect to the main flow direction.

  • PDF

두 개의 원형 실린더 주위의 유동 패턴 (Flow Pattern in the Presence of Two Nearby Circular Cylinders)

  • 이경준;양경수
    • 대한기계학회논문집B
    • /
    • 제31권8호
    • /
    • pp.724-732
    • /
    • 2007
  • Flow patterns in the presence of two identical nearby circular cylinders at Re=100 were numerically studied. We considered all possible arrangements of the two circular cylinders in terms of the distance between the two cylinders and the inclination angle with respect to the direction of the main flow. Eight distinct flow patterns were identified based on vorticity contours and streamlines, which are Base-Bleed, Biased-Base-Bleed, Shear-Layer-Reattachment, Induced-Separation, Vortex-Impingement, Flip-Flopping, Modulated Periodic, and Synchronized-Vortex-Shedding. Collecting all the numerical results, we propose a general flow pattern diagram for flows past two nearby cylinders. The perfect geometrical symmetry implied in the flow configuration allows one to use this diagram to distinguish flow patterns in the presence of two identical circular cylinders arbitrarily positioned in physical space with respect to the main flow direction.

The near wake of three circular cylinders in an equilateral triangular arrangement at a low Reynolds number Re=100

  • Bai, Honglei;Lin, Yufeng;Alam, Md. Mahbub
    • Wind and Structures
    • /
    • 제30권5호
    • /
    • pp.451-463
    • /
    • 2020
  • Two-dimensional numerical simulations are conducted at a low Reynolds number Re = 100 to investigate the near wake of three identical circular cylinders that are arranged in an equilateral triangular configuration. The incident angle of the three-cylinder configuration with respect to incoming flow is varied from θ = 0° to 60°, while the spacing between adjacent cylinders (L) covers a wide range of L/D = 1.25-7.0, where D is diameter of the cylinder. Typical flow structures in the near wake of the three-cylinder configuration are identified, including a single Karman vortex street, bistable flip-flopping near wake, anti-phase and/or in-phase vortex shedding, shear layer reattachment, and vortex impingement, depending on the configuration (L/D, θ). The behavior of Strouhal number (St) is discussed in detail, echoing the distinct structures of near wake. Furthermore, fluid forces on the individual cylinders are examined, which, though highly depending on (L/D, θ), exhibit a close correlation to the near wake behavior.

차분격자볼츠만법에 의한 유동소음의 수치계산 (Numerical Simulation of Aerodynamic Sound by the Finite Difference Lattice Boltzmann Method)

  • 강호근;김은라
    • 한국해양공학회지
    • /
    • 제18권2호
    • /
    • pp.10-17
    • /
    • 2004
  • In this research, a numerical simulation for the acoustic sounds around a two-dimensional circular cylinder in a uniform flaw was developed, using the finite difference lattice Boltzmann model. We examine the boundary condition, which is determined by the distribution function concerning density, velocity, and internal energy at the boundary node. Pressure variation, due to the emission of the acoustic waves, is very small, but we can detect this periodic variation in the region far from the cylinder. Daple-like emission of acoustic waves is seen, and these waves travel with the speed of sound, and are synchronized with the frequency of the lift on the cylinder, due to the Karman vortex street. It is also apparent that the size of the sound pressure is proportional to the central distance to the circular cylinder. The lattice BGK model for compressible fluids is shown to be a powerful tool for the simulation of gas flaws.

상류 캐비티로 인한 실린더 주위의 유동장 변화 (Horseshoe Vortices variation around a Circular Cylinder with Upstream Cavity)

  • 강경준;김동범;송성진
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회B
    • /
    • pp.2625-2630
    • /
    • 2008
  • Horseshoe vortices are formed at the junction of an object immersed in fluid-flow and endwall plate as a result of three-dimensional boundary layer separation. This study shows preliminary results of the kinematics of such horseshoe vortices around a circular cylinder with a cavity (slot) placed upstream to disturb the primary separation line. Through the cavity, no mass flow addition (blowing) or reduction (suction) is applied. The upstream cavity weakens the adverse pressure gradient before the cavity. With the upstream cavity, a single vortex is found to form immediately upstream of the cylinder whereas a typical two vortex system is observed in the absence of the cavity. Furthermore, the strength of the single vortex tends to be reduced, resulting from the interaction with the separated flow convecting directly towards the leading edge of the cylinder.

  • PDF

Wave Phase Shift of a Submerged Circular Cylinder

  • Hang-Shoon,Choi
    • 대한조선학회지
    • /
    • 제17권1호
    • /
    • pp.31-37
    • /
    • 1980
  • Herein the flow past a submerged circular cylinder with a free surface is mapped onto a reference plane, in which the free surface is transformed to a straight line and the cylinder to a certain shape. A global mapping function between two planes is sought in a manner that linear free-surface elevation is generated in the physical plane. Hereby the Froude mumber $F_h$, based on the submergence depth h', is assumed to be of order 0(1) and the ratio a'/h'(a'=cylinder radius) of order o(1). Wave thus obtained are slightly different in magnitude and phase from usual linear solution. The resulting free wave starts advanced ahead compared to the classical result and its amount depends on Froude number. Based on the present concept wave forces are calculated. In this type of approach the body boundary condition gives more influence on wave resistance than that by the free surface in the speed range $F_h>1$.

  • PDF

GA기반 3D-PTV 개발과 원주 후류계측 (Development of Genetic Algorithm based 3D-PTV and its Application to the Measurement of the Wake of a Circular Cylinder)

  • 도덕희;조경래;조용범;문지섭;편용범
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집E
    • /
    • pp.548-554
    • /
    • 2001
  • A GA(Genetic Algorithm) based 3D-PTV technique has been developed. The measurement system consists of three CCD cameras, Ar-ion laser, an image grabber and a host computer. The fundamental of the developed technique was based on that one-to-one correspondence is found between two tracer particles selected at two different image frames taking advantage of combinatorial optimization of the genetic algorithm. The fitness function controlling reproductive success in the genetic algorithm was expressed by a kind of continuum theory on the sparsely distributed particles in space. In order to verify the capability of the constructed measurement system, a performance test was made using the LES data set of an impinging jet. The developed 3D-PTV system was applied to the measurement of flow characteristics of the wake of a circular cylinder.

  • PDF

컴퓨터 비젼을 이용한 원기둥형 물체의 3차원 측정 (3-Dimensional Measurement of the Cylindrical Object Using Computer Vision)

  • 장택준;주기세;한민홍
    • 한국정밀공학회지
    • /
    • 제12권12호
    • /
    • pp.38-44
    • /
    • 1995
  • This paper presents a method to measure the position and orientation of a Cylindrical Object(unknown the eiameter and length) lying on a floor, using a camera. The two extreme cross section of the cylinder will be viewed as distorted ellipese or circular are, while its limb edge will be shown as two straight lines. The diameter of the cylinder is determined from the geometric properties of the two straight lines, which in turn provides information regarding the length of the cylinder. From the 3-dimensional measurement, the 3D coordinates of the center points of the two extreme cross sections are determined to give the position and orientation of the cylinder. This method is used for automated pick-and-place operations of cylinder, such as sheet coils, or drums in warehouses.

  • PDF