• 제목/요약/키워드: Twitter sentiment analysis

검색결과 93건 처리시간 0.023초

Computational Analysis on Twitter Users' Attitudes towards COVID-19 Policy Intervention

  • Joohee Kim;Yoomi Kim
    • International Journal of Advanced Culture Technology
    • /
    • 제11권4호
    • /
    • pp.358-377
    • /
    • 2023
  • During the initial period of the COVID-19 pandemic, governments around the world implemented non-pharmaceutical interventions. For these policy interventions to be effective, authorities engaged in the political discourse of legitimising their activity to generate positive public attitudes. To understand effective COVID-19 policy, this study investigates public attitudes in South Korea, the United Kingdom, and the United States and how they reflect different legitimisation of policy intervention. We adopt a big data approach to analyse public attitudes, drawing from public comments posted on Twitter during selected periods. We collect the number of tweets related to COVID-19 policy intervention and conduct a sentiment analysis using a deep learning method. Public attitudes and sentiments in the three countries show different patterns according to how policy interventions were implemented. Overall concern about policy intervention is higher in South Korea than in the other two countries. However, public sentiments in all three countries tend to improve following implementation of policy intervention. The findings suggest that governments can achieve policy effectiveness when consistent and transparent communication take place during the initial period of the pandemic. This study contributes to the existing literature by applying big data analysis to explain which policies engender positive public attitudes.

SNS에서의 언어 간 감성 차이 연구: 6개 언어를 중심으로 (Differences in Sentiment on SNS: Comparison among Six Languages)

  • 김형호;장필식
    • 디지털융복합연구
    • /
    • 제14권3호
    • /
    • pp.165-170
    • /
    • 2016
  • 본 연구의 목적은 SNS 활용에 있어 사용자 언어 간 감성의 평균차이가 있는지를 검증하는 것이다. 가장 많이 이용되는 SNS 중 하나인 트위터를 대상으로, 영어, 독일어, 러시아어, 스페인어, 터키어 및 네덜란드어 등 6개 언어로 작성된 약 2억 개 트윗을 스트리밍 API를 이용하여 수집하였으며, SentiStrength를 이용하여 주관적/객관적 비율, 감성강도, 긍정/부정 비율, 리트윗 횟수 및 경계불투과도 등에 대한 분석을 시행하고, 트위터를 통한 감성표현의 경향성과 변동을 파악하였다. 분석결과, 언어권에 따라 주관적/객관적 트윗 비율과 긍정/부정 트윗 비율이 각각 통계적으로 유의한 차이가 있는 것으로 나타났다(p<0.001). 또한, 언어의 종류는 감성강도와 경계 불투과도 그리고 리트윗 횟수에 통계적으로 유의한(p<0.001) 영향을 미치는 것으로 파악되었다. 이러한 결과는 SNS를 활용한 감성분석에 있어 언어, 문화 별 경향성 및 수준차이를 반드시 고려하여야 한다는 것을 보여준다.

스마트 SNS 맵: 위치 정보를 기반으로 한 스마트 소셜 네트워크 서비스 데이터 맵핑 및 시각화 시스템 (Smart SNS Map: Location-based Social Network Service Data Mapping and Visualization System)

  • 윤장호;이승훈;김현철
    • 한국멀티미디어학회논문지
    • /
    • 제19권2호
    • /
    • pp.428-435
    • /
    • 2016
  • Hundreds of millions of new posts and information are being uploaded and propagated everyday on Online Social Networks(OSN) like Twitter, Facebook, or Instagram. This paper proposes and implements a GPS-location based SNS data mapping, analysis, and visualization system, called Smart SNS Map, which collects SNS data from Twitter and Instagram using hundreds of PlanetLab nodes distributed across the globe. Like no other previous systems, our system uniquely supports a variety of functions, including GPS-location based mapping of collected tweets and Instagram photos, keyword-based tweet or photo searching, real-time heat-map visualization of tweets and instagram photos, sentiment analysis, word cloud visualization, etc. Overall, a system like this, admittedly still in a prototype phase though, is expected to serve a role as a sort of social weather station sooner or later, which will help people understand what are happening around the SNS users, systems, society, and how they feel about them, as well as how they change over time and/or space.

Comparison of Sentiment Analysis from Large Twitter Datasets by Naïve Bayes and Natural Language Processing Methods

  • Back, Bong-Hyun;Ha, Il-Kyu
    • Journal of information and communication convergence engineering
    • /
    • 제17권4호
    • /
    • pp.239-245
    • /
    • 2019
  • Recently, effort to obtain various information from the vast amount of social network services (SNS) big data generated in daily life has expanded. SNS big data comprise sentences classified as unstructured data, which complicates data processing. As the amount of processing increases, a rapid processing technique is required to extract valuable information from SNS big data. We herein propose a system that can extract human sentiment information from vast amounts of SNS unstructured big data using the naïve Bayes algorithm and natural language processing (NLP). Furthermore, we analyze the effectiveness of the proposed method through various experiments. Based on sentiment accuracy analysis, experimental results showed that the machine learning method using the naïve Bayes algorithm afforded a 63.5% accuracy, which was lower than that yielded by the NLP method. However, based on data processing speed analysis, the machine learning method by the naïve Bayes algorithm demonstrated a processing performance that was approximately 5.4 times higher than that by the NLP method.

Sentiment Analysis on Indonesia Economic Growth using Deep Learning Neural Network Method

  • KRISMAWATI, Dewi;MARIEL, Wahyu Calvin Frans;ARSYI, Farhan Anshari;PRAMANA, Setia
    • 산경연구논집
    • /
    • 제13권6호
    • /
    • pp.9-18
    • /
    • 2022
  • Purpose: The government around the world is still highlighting the effect of the new variant of Covid-19. The government continues to make efforts to restore the economy through several programs, one of them is National Economic Recovery. This program is expected to increase public and investor confidence in handling Covid-19. This study aims to capture public sentiment on the economic growth rate in Indonesia, especially during the third wave of the omicron variant of the covid-19 virus, that is at the time in the fourth quarter of 2021. Research design, data, and methodology: The approach used in this research is to collect crowdsourcing data from twitter, in the range of 1st to 10th October 2021. The analysis is done by building model using Deep Learning Neural Network method. Results: The result of the sentiment analysis is that most of the tweets have a neutral sentiment on the Economic Growth discussion. Several central figures who discussed were Minister of Coordinating for the Economy of Indonesia, Minister of State-Owned Enterprises. Conclusions: Data from social media can be used by the government to capture public responses, especially public sentiment regarding economic growth. This can be used by policy makers, for example entrepreneurs to anticipate economic movements under certain conditions.

지역별 감성 분석을 위한 트위터 데이터 수집 시스템 설계 (Design of Twitter data collection system for regional sentiment analysis)

  • 최기원;김희철
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2017년도 추계학술대회
    • /
    • pp.506-509
    • /
    • 2017
  • 오피니언 마이닝은 텍스트 속의 감성을 분석해 낼 수 있는 방법으로 작성자의 정서 상태 파악이나 대중의 의견을 알아내기 위해 사용된다. 이를 통해서 개인의 감성을 분석할 수 있듯이 텍스트를 지역별로 수집하여 분석한다면 지역별로 가지고 있는 감정 상태에 대해서 알아 낼 수 있다. 지역별 감성분석은 개인 감성분석에서 얻어 낼 수 없었던 정보를 얻어낼 수 있으며 해당 지역이 어떠한 감정을 가지고 있을 때, 그 원인에 대해서도 파악할 수 있다. 지역별 감성 분석을 위해서는 각 지역별로 작성된 텍스트 데이터들이 필요하므로 트위터 크롤링을 통해서 데이터를 수집해야 한다. 따라서 본 논문에서는 지역별 감성분석을 위한 트위터 데이터 수집 시스템을 설계한다. 클라이언트에서는 특정 지역 및 시간대의 트윗 데이터를 요청하며, 서버에서는 클라이언트로부터 요청받은 트윗 데이터를 수집 및 전송한다. 지역이 가지는 위도, 경도 값을 통해 해당 지역의 트윗 데이터를 수집하며, 수집한 데이터들을 통해 텍스트를 지역 및 시간별로 관리할 수 있다. 본 시스템 설계를 통해 감성분석을 위한 효율적인 데이터 수집 및 관리를 기대한다.

  • PDF

감성 분석을 위한 어휘 통합 합성곱 신경망에 관한 연구 (A Study on Lexicon Integrated Convolutional Neural Networks for Sentiment Analysis)

  • 윤주성;김현철
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2017년도 춘계학술발표대회
    • /
    • pp.916-919
    • /
    • 2017
  • 최근 딥러닝의 발달로 인해 Sentiment analysis분야에서도 다양한 기법들이 적용되고 있다. 이미지, 음성인식 분야에서 높은 성능을 보여주었던 Convolutional Neural Networks (CNN)은 최근 자연어처리 분야에서도 활발하게 연구가 진행되고 있으며 Sentiment analysis에도 효과적인 것으로 알려져 있다. 기존의 머신러닝에서는 lexicon을 이용한 기법들이 활발하게 연구되었지만 word embedding이 등장하면서 이러한 시도가 점차 줄어들게 되었다. 그러나 lexicon은 여전히 sentiment analysis에서 유용한 정보를 제공한다. 본 연구에서는 SemEval 2017 Task4에서 제공한 Twitter dataset과 다양한 lexicon corpus를 사용하여 lexicon을 CNN과 결합하였을 때 모델의 성능이 얼마큼 향상되는지에 대하여 연구하였다. 또한 word embedding과 lexicon이 미치는 영향에 대하여 분석하였다. 모델을 평가하는 metric은 positive, negative, neutral 3가지 class에 대한 macroaveraged F1 score를 사용하였다.

감성분석 결과와 사용자 만족도와의 관계 -기상청 사례를 중심으로- (Relationship between Result of Sentiment Analysis and User Satisfaction -The case of Korean Meteorological Administration-)

  • 김인겸;김혜민;임병환;이기광
    • 한국콘텐츠학회논문지
    • /
    • 제16권10호
    • /
    • pp.393-402
    • /
    • 2016
  • 기상청에서 현재 시행되고 있는 만족도 설문조사의 한계를 보완하기 위해 SNS를 통한 감성분석이 활용될 수 있다. 감성분석은 2011~2014년 동안 '기상청'을 언급한 트위터를 수집하여 나이브 베이즈 방법으로 긍정, 부정, 중립 감성을 분류하였다. 기본적인 나이브 베이즈 방법에 긍정, 부정, 중립의 각 감성에서만 출현한 형태소들로 추가사전을 만들어 감성분석의 정확도를 향상시키는 방법을 제안하였다. 분석결과 기본적인 나이브 베이즈 방법으로 감성을 분류할 경우 약 75%의 정확도로 학습데이터를 재현한데 반해 추가 사전을 적용할 경우 약 97%의 정확성을 보였다. 추가사전을 활용하여 검증자료의 감성을 분류한 결과 약 75%의 분류 정확도를 보였다. 낮은 분류 정확도는 향후 기상 관련의 다양한 키워드를 포함시켜 학습데이터 양을 늘려 감성사전의 질을 높임과 동시에 상시적인 사전의 업데이트를 통해 개선될 수 있을 것이다. 한편, 개별 어휘의 사전적 의미에 기반한 감성분석과 달리 문장의 의미에 기반하여 감성을 분류할 경우 부정적 감성 비율의 증가와 만족도 변화 추이를 설명할 수 있을 것으로 보여 향후 설문조사를 보완할 수 있는 좋은 수단으로 SNS를 통한 감성분석이 활용될 수 있을 것으로 사료된다.

의견 어구의 구문 관계를 고려한 트위터 의견 검색 (Opinion Retrieval in Twitter Considering Syntactic Relations of Sentiment Phrase)

  • 김윤성;양민철;이승욱;임해창
    • 정보과학회 컴퓨팅의 실제 논문지
    • /
    • 제20권9호
    • /
    • pp.492-497
    • /
    • 2014
  • 본 연구에서는 대중적인 소셜 네트워크 서비스 중 하나이며 많은 사람들이 다양한 의견을 공유하는 트위터를 대상으로 질의어(또는 주제어)에 적합한 의견을 지닌 트윗을 검색하는 방법론을 제안한다. 기존의 의견 검색 시스템은 의견을 지닌 구절이 주어진 질의어나 화자와 관련이 없음에도 불구하고 그런 구절의 유무를 중요한 요소로 여겼다. 이와 같은 문제를 해결하기 위하여 본 연구에서는 1) 의견 어구-질의어 관계, 2) 의견 어구-화자 관계, 그리고 3) 의견 어구의 의존 구문 역할 등의 구문 요소를 반영하는 방법을 고안하였다. 또한, 의견을 가진 트윗을 검색하기 위하여 질의어와의 적절성, 텍스트 정보, 사용자 정보, 트위터 특화 자질에 기반한 랭킹 학습 방법을 이용하였다. 실제 데이터를 이용한 실험 결과, 본 시스템은 기존 연구들보다 더 좋은 성능을 보이고 있다.

한국어 극성 사전 구축을 위한 크라우드소싱 기반 감성 단어 극성 태깅 게임 (A Crowdsourcing-based Emotional Words Tagging Game for Building a Polarity Lexicon in Korean)

  • 김준기;강신진;배병철
    • 한국게임학회 논문지
    • /
    • 제17권2호
    • /
    • pp.135-144
    • /
    • 2017
  • 감성 분석은 글을 통해 작성자의 주관적인 생각이나 느낌을 분석하는 방법으로 효과적인 감성 분석을 위해서는 감성 단어 극성 사전 구축이 필수적이다. 본 논문은 효율적인 한국어 극성 사전 구축을 위해 우리가 개발한 크라우드소싱 기반 게임을 소개한다. 먼저, 크롤러를 이용해 인터넷 커뮤니티에서 말뭉치들을 수집했고, Twitter 형태소를 이용해 수집한 말뭉치를 형태소별로 분류하고 단어화했다. 이 단어들은 모바일 플랫폼 기반 태깅 게임 형태로 제공되어 게임플레이를 통해 플레이어들이 자발적으로 단어들의 극성을 선택하고 결과가 데이터 베이스에 축적되도록 게임이 설계되었다. 현재까지 약 1200여개의 단어들의 극성을 태깅하였으며, 향후 좀 더 많은 감성 단어 데이터들을 축적함으로써 특히 게임 도메인에서 한국어 감성 분석 연구에 기여할 것으로 기대한다.