International Journal of Advanced Culture Technology
/
제11권4호
/
pp.358-377
/
2023
During the initial period of the COVID-19 pandemic, governments around the world implemented non-pharmaceutical interventions. For these policy interventions to be effective, authorities engaged in the political discourse of legitimising their activity to generate positive public attitudes. To understand effective COVID-19 policy, this study investigates public attitudes in South Korea, the United Kingdom, and the United States and how they reflect different legitimisation of policy intervention. We adopt a big data approach to analyse public attitudes, drawing from public comments posted on Twitter during selected periods. We collect the number of tweets related to COVID-19 policy intervention and conduct a sentiment analysis using a deep learning method. Public attitudes and sentiments in the three countries show different patterns according to how policy interventions were implemented. Overall concern about policy intervention is higher in South Korea than in the other two countries. However, public sentiments in all three countries tend to improve following implementation of policy intervention. The findings suggest that governments can achieve policy effectiveness when consistent and transparent communication take place during the initial period of the pandemic. This study contributes to the existing literature by applying big data analysis to explain which policies engender positive public attitudes.
본 연구의 목적은 SNS 활용에 있어 사용자 언어 간 감성의 평균차이가 있는지를 검증하는 것이다. 가장 많이 이용되는 SNS 중 하나인 트위터를 대상으로, 영어, 독일어, 러시아어, 스페인어, 터키어 및 네덜란드어 등 6개 언어로 작성된 약 2억 개 트윗을 스트리밍 API를 이용하여 수집하였으며, SentiStrength를 이용하여 주관적/객관적 비율, 감성강도, 긍정/부정 비율, 리트윗 횟수 및 경계불투과도 등에 대한 분석을 시행하고, 트위터를 통한 감성표현의 경향성과 변동을 파악하였다. 분석결과, 언어권에 따라 주관적/객관적 트윗 비율과 긍정/부정 트윗 비율이 각각 통계적으로 유의한 차이가 있는 것으로 나타났다(p<0.001). 또한, 언어의 종류는 감성강도와 경계 불투과도 그리고 리트윗 횟수에 통계적으로 유의한(p<0.001) 영향을 미치는 것으로 파악되었다. 이러한 결과는 SNS를 활용한 감성분석에 있어 언어, 문화 별 경향성 및 수준차이를 반드시 고려하여야 한다는 것을 보여준다.
Hundreds of millions of new posts and information are being uploaded and propagated everyday on Online Social Networks(OSN) like Twitter, Facebook, or Instagram. This paper proposes and implements a GPS-location based SNS data mapping, analysis, and visualization system, called Smart SNS Map, which collects SNS data from Twitter and Instagram using hundreds of PlanetLab nodes distributed across the globe. Like no other previous systems, our system uniquely supports a variety of functions, including GPS-location based mapping of collected tweets and Instagram photos, keyword-based tweet or photo searching, real-time heat-map visualization of tweets and instagram photos, sentiment analysis, word cloud visualization, etc. Overall, a system like this, admittedly still in a prototype phase though, is expected to serve a role as a sort of social weather station sooner or later, which will help people understand what are happening around the SNS users, systems, society, and how they feel about them, as well as how they change over time and/or space.
Journal of information and communication convergence engineering
/
제17권4호
/
pp.239-245
/
2019
Recently, effort to obtain various information from the vast amount of social network services (SNS) big data generated in daily life has expanded. SNS big data comprise sentences classified as unstructured data, which complicates data processing. As the amount of processing increases, a rapid processing technique is required to extract valuable information from SNS big data. We herein propose a system that can extract human sentiment information from vast amounts of SNS unstructured big data using the naïve Bayes algorithm and natural language processing (NLP). Furthermore, we analyze the effectiveness of the proposed method through various experiments. Based on sentiment accuracy analysis, experimental results showed that the machine learning method using the naïve Bayes algorithm afforded a 63.5% accuracy, which was lower than that yielded by the NLP method. However, based on data processing speed analysis, the machine learning method by the naïve Bayes algorithm demonstrated a processing performance that was approximately 5.4 times higher than that by the NLP method.
Purpose: The government around the world is still highlighting the effect of the new variant of Covid-19. The government continues to make efforts to restore the economy through several programs, one of them is National Economic Recovery. This program is expected to increase public and investor confidence in handling Covid-19. This study aims to capture public sentiment on the economic growth rate in Indonesia, especially during the third wave of the omicron variant of the covid-19 virus, that is at the time in the fourth quarter of 2021. Research design, data, and methodology: The approach used in this research is to collect crowdsourcing data from twitter, in the range of 1st to 10th October 2021. The analysis is done by building model using Deep Learning Neural Network method. Results: The result of the sentiment analysis is that most of the tweets have a neutral sentiment on the Economic Growth discussion. Several central figures who discussed were Minister of Coordinating for the Economy of Indonesia, Minister of State-Owned Enterprises. Conclusions: Data from social media can be used by the government to capture public responses, especially public sentiment regarding economic growth. This can be used by policy makers, for example entrepreneurs to anticipate economic movements under certain conditions.
오피니언 마이닝은 텍스트 속의 감성을 분석해 낼 수 있는 방법으로 작성자의 정서 상태 파악이나 대중의 의견을 알아내기 위해 사용된다. 이를 통해서 개인의 감성을 분석할 수 있듯이 텍스트를 지역별로 수집하여 분석한다면 지역별로 가지고 있는 감정 상태에 대해서 알아 낼 수 있다. 지역별 감성분석은 개인 감성분석에서 얻어 낼 수 없었던 정보를 얻어낼 수 있으며 해당 지역이 어떠한 감정을 가지고 있을 때, 그 원인에 대해서도 파악할 수 있다. 지역별 감성 분석을 위해서는 각 지역별로 작성된 텍스트 데이터들이 필요하므로 트위터 크롤링을 통해서 데이터를 수집해야 한다. 따라서 본 논문에서는 지역별 감성분석을 위한 트위터 데이터 수집 시스템을 설계한다. 클라이언트에서는 특정 지역 및 시간대의 트윗 데이터를 요청하며, 서버에서는 클라이언트로부터 요청받은 트윗 데이터를 수집 및 전송한다. 지역이 가지는 위도, 경도 값을 통해 해당 지역의 트윗 데이터를 수집하며, 수집한 데이터들을 통해 텍스트를 지역 및 시간별로 관리할 수 있다. 본 시스템 설계를 통해 감성분석을 위한 효율적인 데이터 수집 및 관리를 기대한다.
최근 딥러닝의 발달로 인해 Sentiment analysis분야에서도 다양한 기법들이 적용되고 있다. 이미지, 음성인식 분야에서 높은 성능을 보여주었던 Convolutional Neural Networks (CNN)은 최근 자연어처리 분야에서도 활발하게 연구가 진행되고 있으며 Sentiment analysis에도 효과적인 것으로 알려져 있다. 기존의 머신러닝에서는 lexicon을 이용한 기법들이 활발하게 연구되었지만 word embedding이 등장하면서 이러한 시도가 점차 줄어들게 되었다. 그러나 lexicon은 여전히 sentiment analysis에서 유용한 정보를 제공한다. 본 연구에서는 SemEval 2017 Task4에서 제공한 Twitter dataset과 다양한 lexicon corpus를 사용하여 lexicon을 CNN과 결합하였을 때 모델의 성능이 얼마큼 향상되는지에 대하여 연구하였다. 또한 word embedding과 lexicon이 미치는 영향에 대하여 분석하였다. 모델을 평가하는 metric은 positive, negative, neutral 3가지 class에 대한 macroaveraged F1 score를 사용하였다.
기상청에서 현재 시행되고 있는 만족도 설문조사의 한계를 보완하기 위해 SNS를 통한 감성분석이 활용될 수 있다. 감성분석은 2011~2014년 동안 '기상청'을 언급한 트위터를 수집하여 나이브 베이즈 방법으로 긍정, 부정, 중립 감성을 분류하였다. 기본적인 나이브 베이즈 방법에 긍정, 부정, 중립의 각 감성에서만 출현한 형태소들로 추가사전을 만들어 감성분석의 정확도를 향상시키는 방법을 제안하였다. 분석결과 기본적인 나이브 베이즈 방법으로 감성을 분류할 경우 약 75%의 정확도로 학습데이터를 재현한데 반해 추가 사전을 적용할 경우 약 97%의 정확성을 보였다. 추가사전을 활용하여 검증자료의 감성을 분류한 결과 약 75%의 분류 정확도를 보였다. 낮은 분류 정확도는 향후 기상 관련의 다양한 키워드를 포함시켜 학습데이터 양을 늘려 감성사전의 질을 높임과 동시에 상시적인 사전의 업데이트를 통해 개선될 수 있을 것이다. 한편, 개별 어휘의 사전적 의미에 기반한 감성분석과 달리 문장의 의미에 기반하여 감성을 분류할 경우 부정적 감성 비율의 증가와 만족도 변화 추이를 설명할 수 있을 것으로 보여 향후 설문조사를 보완할 수 있는 좋은 수단으로 SNS를 통한 감성분석이 활용될 수 있을 것으로 사료된다.
본 연구에서는 대중적인 소셜 네트워크 서비스 중 하나이며 많은 사람들이 다양한 의견을 공유하는 트위터를 대상으로 질의어(또는 주제어)에 적합한 의견을 지닌 트윗을 검색하는 방법론을 제안한다. 기존의 의견 검색 시스템은 의견을 지닌 구절이 주어진 질의어나 화자와 관련이 없음에도 불구하고 그런 구절의 유무를 중요한 요소로 여겼다. 이와 같은 문제를 해결하기 위하여 본 연구에서는 1) 의견 어구-질의어 관계, 2) 의견 어구-화자 관계, 그리고 3) 의견 어구의 의존 구문 역할 등의 구문 요소를 반영하는 방법을 고안하였다. 또한, 의견을 가진 트윗을 검색하기 위하여 질의어와의 적절성, 텍스트 정보, 사용자 정보, 트위터 특화 자질에 기반한 랭킹 학습 방법을 이용하였다. 실제 데이터를 이용한 실험 결과, 본 시스템은 기존 연구들보다 더 좋은 성능을 보이고 있다.
감성 분석은 글을 통해 작성자의 주관적인 생각이나 느낌을 분석하는 방법으로 효과적인 감성 분석을 위해서는 감성 단어 극성 사전 구축이 필수적이다. 본 논문은 효율적인 한국어 극성 사전 구축을 위해 우리가 개발한 크라우드소싱 기반 게임을 소개한다. 먼저, 크롤러를 이용해 인터넷 커뮤니티에서 말뭉치들을 수집했고, Twitter 형태소를 이용해 수집한 말뭉치를 형태소별로 분류하고 단어화했다. 이 단어들은 모바일 플랫폼 기반 태깅 게임 형태로 제공되어 게임플레이를 통해 플레이어들이 자발적으로 단어들의 극성을 선택하고 결과가 데이터 베이스에 축적되도록 게임이 설계되었다. 현재까지 약 1200여개의 단어들의 극성을 태깅하였으며, 향후 좀 더 많은 감성 단어 데이터들을 축적함으로써 특히 게임 도메인에서 한국어 감성 분석 연구에 기여할 것으로 기대한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.