• Title/Summary/Keyword: Twitter sentiment analysis

Search Result 93, Processing Time 0.023 seconds

Cyberbullying Detection in Twitter Using Sentiment Analysis

  • Theng, Chong Poh;Othman, Nur Fadzilah;Abdullah, Raihana Syahirah;Anawar, Syarulnaziah;Ayop, Zakiah;Ramli, Sofia Najwa
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.11
    • /
    • pp.1-10
    • /
    • 2021
  • Cyberbullying has become a severe issue and brought a powerful impact on the cyber world. Due to the low cost and fast spreading of news, social media has become a tool that helps spread insult, offensive, and hate messages or opinions in a community. Detecting cyberbullying from social media is an intriguing research topic because it is vital for law enforcement agencies to witness how social media broadcast hate messages. Twitter is one of the famous social media and a platform for users to tell stories, give views, express feelings, and even spread news, whether true or false. Hence, it becomes an excellent resource for sentiment analysis. This paper aims to detect cyberbully threats based on Naïve Bayes, support vector machine (SVM), and k-nearest neighbour (k-NN) classifier model. Sentiment analysis will be applied based on people's opinions on social media and distribute polarity to them as positive, neutral, or negative. The accuracy for each classifier will be evaluated.

Analyzing Dissatisfaction Factors of Weather Service Users Using Twitter and News Headlines

  • Kim, In-Gyum;Lee, Seung-Wook;Kim, Hye-Min;Lee, Dae-Geun;Lim, Byunghwan
    • International Journal of Contents
    • /
    • v.15 no.4
    • /
    • pp.65-73
    • /
    • 2019
  • Social media is a massive dataset in which individuals' thoughts are freely recorded. So there have been a variety of efforts to analyze it and to understand the social phenomenon. In this study, Twitter was used to define the moments when negative perceptions of the Korean Meteorological Administration (KMA) were displayed and the reasons people were dissatisfied with the KMA. Machine learning methods were used for sentiment analysis to automatically train the implied awareness on Twitter which mentioned the KMA July-October 2011-2014. The trained models were used to validate sentiments on Twitter 2015-2016, and the frequency of negative sentiments was compared with the satisfaction of forecast users. It was found that the frequency of the negative sentiments increased before satisfaction decreased sharply. And the tweet keywords and the news headlines were qualitatively compared to analyze the cause of negative sentiments. As a result, it was revealed that the individual caused the increase in the monthly negative sentiments increase in 2016. This study represents the value of sentiment analysis that can complement user satisfaction surveys. Also, combining Twitter and news headlines provided the idea of analyzing the causes of dissatisfaction that are difficult to identify with only satisfaction surveys. The results contribute to improving user satisfaction with weather services by efficiently managing changes in satisfaction.

Sentimental Analysis of Twitter Data Using Machine Learning and Deep Learning: Nickel Ore Export Restrictions to Europe Under Jokowi's Administration 2022

  • Sophiana Widiastutie;Dairatul Maarif;Adinda Aulia Hafizha
    • Asia pacific journal of information systems
    • /
    • v.34 no.2
    • /
    • pp.400-420
    • /
    • 2024
  • Nowadays, social media has evolved into a powerful networked ecosystem in which governments and citizens publicly debate economic and political issues. This holds true for the pros and cons of Indonesia's ore nickel export restriction to Europe, which we aim to investigate further in this paper. Using Twitter as a dependable channel for conducting sentiment analysis, we have gathered 7070 tweets data for further processing using two sentiment analysis approaches, namely Support Vector Machine (SVM) and Long Short Term Memory (LSTM). Model construction stage has shown that Bidirectional LSTM performed better than LSTM and SVM kernels, with accuracy of 91%. The LSTM comes second and The SVM Radial Basis Function comes third in terms of best model, with 88% and 83% accuracies, respectively. In terms of sentiments, most Indonesians believe that the nickel ore provision will have a positive impact on the mining industry in Indonesia. However, a small number of Indonesian citizens contradict this policy due to fears of a trade dispute that could potentially harm Indonesia's bilateral relations with the EU. Hence, this study contributes to the advancement of measuring public opinions through big data tools by identifying Bidirectional LSTM as the optimal model for the dataset.

Cyberbullying Detection by Sentiment Analysis of Tweets' Contents Written in Arabic in Saudi Arabia Society

  • Almutairi, Amjad Rasmi;Al-Hagery, Muhammad Abdullah
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.3
    • /
    • pp.112-119
    • /
    • 2021
  • Social media has become a global means of communication in people's lives. Most people are using Twitter for communication purposes and its inappropriate use, which has negative effects on people's lives. One of the widely common misuses of Twitter is cyberbullying. As the resources of dialectal Arabic are rare, so for cyberbullying most people are using dialectal Arabic. For this reason, the ultimate goal of this study is to detect and classify cyberbullying on Twitter in the Arabic context in Saudi Arabia. To help in the detection and classification of tweets, Pointwise Mutual Information (PMI) to generate a lexicon, and Support Vector Machine (SVM) algorithms are used. The evaluation is performed on both methods in terms of the F1-score. However, the F1-score after applying the PMI is 50%, while after the SVM application on the resampling data it is 82%. The analysis of the results shows that the SVM algorithm outperforms better.

Hotspot Analysis of Korean Twitter Sentiments (한국어 트위터 감정의 핫스팟 분석)

  • Lim, Joasang;Kim, Jinman
    • Journal of Korea Multimedia Society
    • /
    • v.18 no.2
    • /
    • pp.233-243
    • /
    • 2015
  • A hotspot is a spatial pattern that properties or events of spaces are densely revealed in a particular area. Whereas location information is easily captured with increasing use of mobile devices, so is not our emotion unless asking directly through a survey. Tweet provides a good way of analyzing such spatial sentiment, but relevant research is hard to find. Therefore, we analyzed hotspots of emotion in the twitter using spatial autocorrelation. 10,142 tweets and related GPS data were extracted. Sentiment of tweets was classified into good or bad with a support vector machine algorithm. We used Moran's I and Getis-Ord $G_i^*$ for global and local spatial autocorrelation. Some hotspots were found significant and drawn on Seoul metropolitan area map. These results were found very similar to an earlier conducted official survey of happiness index.

Evaluating the Quality of Public Services Through Social Media

  • Wilantika, Nori;Wibisono, Septian Bagus
    • Asian Journal for Public Opinion Research
    • /
    • v.9 no.3
    • /
    • pp.240-265
    • /
    • 2021
  • Public services need to be evaluated regularly to identify areas that need further improvement. Data collection via Twitter is affordable and timely, so it has the potential to be utilized to evaluate the quality of public service. This study utilizes tweets mentioning three service units of the provincial government of Jakarta and applies both sentiment analysis and topic classification to predict a rating/score of public service quality. The research goal is to examine if the evaluation of public services based on social media data is possible. The findings indicate that the use of Twitter has an advantage in terms of sample size and variety of opinions. Tweets can be translated into scores as well. Nonetheless, the representativeness issue and the predominance of complaint tweets can affect the reliability of the results.

Twitter Sentiment Analysis for the Recent Trend Extracted from the Newspaper Article (신문기사로부터 추출한 최근동향에 대한 트위터 감성분석)

  • Lee, Gyoung Ho;Lee, Kong Joo
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.2 no.10
    • /
    • pp.731-738
    • /
    • 2013
  • We analyze public opinion via a sentiment analysis of tweets collected by using recent topic keywords extracted from newspaper articles. Newspaper articles collected within a certain period of time are clustered by using K-means algorithm and topic keywords for each cluster are extracted by using term frequency. A sentiment analyzer learned by a machine learning method can classify tweets according to their polarity values. We have an assumption that tweets collected by using these topic keywords deal with the same topics as the newspaper articles mentioned if the tweets and the newspapers are generated around the same time. and we tried to verify the validity of this assumption.

A Study on the Service Innovation using SNS (SNS를 이용한 서비스 혁신 방법에 관한 연구)

  • Lee, Jong-Chan;Lee, Won-Young
    • Journal of IKEEE
    • /
    • v.20 no.3
    • /
    • pp.235-240
    • /
    • 2016
  • In this study, we use the data collected from Twitter, as an SNS(Social Networking Service), for service innovation. This data was collected and processed by Flume. The data set in May 2016 was 4,766 and 15,543 from company S and company X, respectively. We were able to figure out the emotional atmosphere of the two companies through the sentiment analysis(SA) and to find out about the vertical relationship through the bibliometric analysis(BA). Furthermore, we were able to grasp the horizontal relationship through the social network analysis(SNA). It was concluded that SNS was worth while to derive an innovative item.

Design of Big Data Preference Analysis System (빅데이터 선호도 분석 시스템 설계)

  • Son, Sung Il;Park, Chan Khon
    • Journal of Korea Multimedia Society
    • /
    • v.17 no.11
    • /
    • pp.1286-1295
    • /
    • 2014
  • This paper suggests the way that it could improve the reliability about preference of user's feedback by adding weighting factor on sentiment analysis, and efficiently make a sentiment analysis of users' emotional perspective on the big data massively generated on twitter. To solve errors on earlier studies, this paper has improved recall and precision of sensibility determination by using sensibility dictionary subdivided sentiment polarity based on the level of sensibility and given impotance to sensibility determination by populating slang, new words, emoticons and idiomatic expressions not in the system dictionary. It has considered the context through conjunctive adverbs fixed in korean characteristics which are free to the word order. It also recognize sensibility words such as TF(Term Frequency), RT(Retweet), Follower which are weighting factors of preference and has increased reliability of preference analysis considering weight on 'a very emotional tweet', 'a recognised tweet from users' and 'a tweeter influencer'

A Study on the Sentiment Analysis of Contemporary Pop Musicians and Classical Music Composers

  • Park, Youngjoo
    • International Journal of Advanced Culture Technology
    • /
    • v.10 no.3
    • /
    • pp.352-359
    • /
    • 2022
  • The study examined a sentiment analysis based on Tweeter messages between contemporary pop musicians and classical music composers. Musicians of each genre were carefully selected for the sentiment analysis. Many opinion messages on Tweets that users have discussed were collected, and the messages were evaluated by using Naïve Bayes Classifier. The results demonstrated that users showed high positive sentiments for the two different genres. However, on average, the positive sentiment values for classical music composers are higher than for contemporary pop musicians. In addition, the rankings of the highest positive sentiments among contemporary pop musicians and classical music composers did not coincide with the popularity of the two different genres of musicians. This study will contribute to the study of future sentimental analysis between music and musicians.