Public information arrivals and their immediate incorporation in asset price is a key component of semi-strong form of the Efficient Market Hypothesis. In this study, we explore the impact of public information arrivals on cryptocurrency market via Twitter posts. The empirical analysis was conducted through various methods including Kapetanios unit root test, Maki cointegration analysis and Markov regime switching regression analysis. Results indicate that while in bull market positive public information arrivals have a positive influence on Ripple's value; in bear market, however, even if the company releases good news, it does not divert out the Ripple from downward trend.
Twitter has been a popular social media platform where people post short messages of 140 characters or less via the web. A hashtag is a word or acronym created by Twitter users to open a discussion about certain topics and issues that have a very high percentage of trending. Since the hashtag posts are sorted by time, not relevancy, people who firstly use Twitter have had difficulty understanding their context. In this paper, we propose a HBase-based automatic summary system in order to reduce the difficulty of understanding. The proposed system combines an automatic summary method with a fuzzy system after storing the streaming data provided by Twitter API to the HBase. Throughout this procedure, we have eliminated the duplicate of contents in the hashtag posts and have computed scores between posts so that the users can access to the trending topics with relevancy.
Research on the news coverage of North Korea has been paying less attention to social media platforms than to legacy media. An increasing number of social media users post, retweet, share, interpret, and set agendas on North Korea. The accessibility of international users and North Korea's publicity purposes make social media a venue for expression, news diversity, and framing about the nation. This study examined the sentiment of Twitter posts on North Korea from a framing perspective and the relationship between network strengths and sentiment from a social network perspective. Data were collected using two tools: Jupyter Notebook with Python 3.6 for preliminary analysis and NodeXL for main analysis. A total of 11,957 tweets, 10,000 of which were collected using Python and 1,957 tweets using NodeXL, about North Korea between June 20-21, 2020 were collected. Results demonstrated that there was more negative sentiment than positive sentiment about North Korea in the sampled Twitter posts. Some users belonging to small network sizes reached out to others on Twitter to build networks and spread positive information about North Korea. Influential users tended to be impartial to sentiment about North Korea, while some Twitter users with a small network exhibited high percentages of positive words about North Korea. Overall, marginalized populations with network bonding were more likely to express positive sentiment about North Korea than were influencers at the center of networks.
In this paper, I applied grounded theory in exploring how Twitter became the battlefield for China's public diplomacy campaign. China's new move to global social media platforms, such as Twitter and Facebook, has been a controversial strategy in public diplomacy. This study analyzes Chinese Foreign Spokesperson Zhao Lijian's Twitter posts and comments. It models China's recent diplomatic move to Twitter as a "war of words" model, with features including "leadership," "polarization," and "aggression," while exerting possible effects as "resistance," "hatred," and "sarcasm" to the global community. Our findings show that by failing to gage public opinion and promote the country's positive image, China's current digital diplomacy strategy reflected by Zhao Lijian's tweets has instead constructed a polarized political public sphere, contradictory to the country's promoted "shared human destiny." The "war of words" model extends our understanding of China's new digital diplomacy move as a hybrid of state propaganda and self-performance. Such a strategy could spread hate speech and accelerate political polarization in cyberspace, despite improvements to China's homogenous network building on Twitter.
Journal of the Korean Society for information Management
/
v.38
no.4
/
pp.113-128
/
2021
In this study, we aimed to understand the public opinion on COVID-19 vaccine. To achieve the goal, we analyzed COVID-19 vaccine-related Twitter posts. 45,413 tweets posted from March 16, 2020 to March 15, 2021 including COVID-19 vaccine names as keywords were collected. The 12 vaccine names used for data collection included 'Pfizer', 'AstraZeneca', 'Modena', 'Jansen', 'NovaVax', 'Sinopharm', 'SinoVac', 'Sputnik V', 'Bharat', 'KhanSino', 'Chumakov', and 'VECTOR' in the order of the number of collected posts. The collected posts were analyzed manually and automatedly through keyword analysis, sentiment analysis, and topic modeling to understand the opinions for the investigated vaccines. According to the results, there were generally more negative posts about vaccines than positive posts. Anxiety about the aftereffects of vaccination and distrust in the efficacy of vaccines were identified as major negative factors for vaccines. On the contrary, the anticipation for the suppression of the spread of coronavirus following vaccination was identified as a positive social factor for vaccines. Different from previous studies that investigated opinions about COVID-19 vaccines through mass media data such as news articles, this study explores opinions of social media users using keyword analysis, sentiment analysis, and topic modeling. In addition, the results of this study can be used by governmental institutions for making policies to promote vaccination reflecting the social atmosphere.
As information and communication technology continue its remarkable development, the exchange of information online becomes as prevalent and frequent as face-to-face communication in daily life. Therefore, the management and application of WOM (word of mouth) practices will become more important than ever to companies. Currently, there are various types of communication channels for online WOM, and each channel has its own unique traits. Most of the previous research studies online WOM by examining the information inside a single communication channel, but this research chooses two different communication channels and analyzes the effects of online WOM with each channel's unique characteristics. More specifically, this research focuses on the expectation that the effects of information from Twitter and blogs on product sales may differ because Twitter and blogs, two different communication channels for online WOM, have their own unique traits. Our particular aim is to perform an in-depth examination on the effects of communication channel's volume and valence on product sales, two important attributes of online WOM. Furthermore, while most of the empirical research focuses on online WOM and analyzes its effect on markets of temporary experience goods, such as movies and books, this research highlights focuses on the automobile market, a durable goods market. The results of our analysis are as follows: First, regarding blogs, a positive valence significantly and positively affects the sales of products, and this result indicates that consumers are influenced more by the emotional aspect of a product presented in a post than by the number of blog posts. Second, regarding Twitter, the volume of online WOM significantly and positively affects sales, an indication that as the number of posts increase, the sales increase. Through this research, we suggest that even those firms that sell durable goods can increase sales through the management and application of online WOM. Moreover, according to the characteristics of communication channels, the effects of online WOM on sales differ. As a practical implication of this research, we suggest that companies can and should create marketing strategies appropriate to their targeted communication channels.
Journal of Korean Library and Information Science Society
/
v.46
no.3
/
pp.225-253
/
2015
This study investigated the interactions between archives and users based on content analysis of posts of Facebook and Twitter operated by archival institutions. It focused on posts in official Facebooks and Twitters of the U.S. and the U.K. national archives. The posts included 66 in Facebook and 670 in Twitter of the U.S. national archives, as well as 73 in Facebook and 84 in Twitter of the U.K. national archive. The analysis showed that information sharing of in-house collections and online resources, as well as information dissemination of events were the most common interaction types of the posts. 1 and 1 communication or information gathering such as questionnaire or vote rarely happened. In addition, the extent of users' responses was great on posts regarding information sharing of in-house collections. Providing information about people or events with timely manners motivated interests and participations of users. It is necessary to consider various types of interactions that facilitate user engagement. It is also important to make efforts to provide timely records in connection with exiting web resources and a variety of social media provided by archival institutions.
This study aims to understand the differences in the media characteristics of two types of media, namely, Blog and Twitter, as well as in their factors that affect product information diffusion. To achieve these objectives, the information diffusion pattern is identified by analyzing the number of product-related posts in each media based on the Bass model. The analysis results revealed that the information diffusion speed of hedonic goods was faster than that of utilitarian goods. Regardless of product type, Twitter had a higher imitation effect than Blog, while Blog had a higher innovation effect than Twitter. The results implied that users of Blog tended to find information by themselves while those of Twitter relied more on the others' evaluation than their own subjective evaluations of innovations.
This study explored keywords and key topics by collecting posts related to 'self-Iinjury' and 'suicide' through Twitter. The study subjects were selected as posts containing related hashtags related to self-injury and suicide from October 29, 2019 to November 30, 2020. Text mining based on collected posts resulted in a total of 11 key topics: -6 related to 'self-Iinjury' and 5 related to 'suicide'. The main message in the topic is as follows. First, looking at the main messages contained in the topic, they honestly expressed self-harm and suicide experiences that are difficult to express offline online, and used SNS as a channelpath for requesting help requests. Second, there were common and discriminatory characteristics in posts related to 'self-Iinjury' and 'suicide'. Although topics related to 'self-Iinjury' mainly revealed emotional control and interpersonal functions of self-harm, messages related to 'suicide' showed more clearly messages about suicide prevention addressing and social problems. These results are meaningful in that they can understand the opinions of people who have experienced self-harm and suicide accidents and the public voice on self-harm and suicide-related issues could be better understood, and that this study seeks for effective self-harm and suicide prevention and intervention measures for self-harm and suicide issues.
Hundreds of millions of new posts and information are being uploaded and propagated everyday on Online Social Networks(OSN) like Twitter, Facebook, or Instagram. This paper proposes and implements a GPS-location based SNS data mapping, analysis, and visualization system, called Smart SNS Map, which collects SNS data from Twitter and Instagram using hundreds of PlanetLab nodes distributed across the globe. Like no other previous systems, our system uniquely supports a variety of functions, including GPS-location based mapping of collected tweets and Instagram photos, keyword-based tweet or photo searching, real-time heat-map visualization of tweets and instagram photos, sentiment analysis, word cloud visualization, etc. Overall, a system like this, admittedly still in a prototype phase though, is expected to serve a role as a sort of social weather station sooner or later, which will help people understand what are happening around the SNS users, systems, society, and how they feel about them, as well as how they change over time and/or space.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.