• 제목/요약/키워드: Twin-Fluid Spray

검색결과 67건 처리시간 0.027초

이유체 노즐 미립화 특성이 요소 열분해에 미치는 영향 (Effect of Atomization Characteristics of Twin Fluid Nozzle on Urea Pyrolysis)

  • 구건우;정경열;윤현진;석지권;홍정구
    • 한국분무공학회지
    • /
    • 제20권3호
    • /
    • pp.162-167
    • /
    • 2015
  • Recently, there has been rising interest in applying urea-SCR systems to large marine diesel engines because the International Maritime Organization (IMO) has decided to enforce NOx reduction regulations. Generally, in the case of urea-SCR of the marine diesel engine, a type of twin fluid atomizer has been using for injection of the urea solution. This study conducted to investigate an effect of the atomization of external-mixing twin fluid nozzle on the conversion efficiency of reductant. The lab-scaled experiment device was installed to mimic the urea-SCR system of the marine diesel engine for this study. In a low temperature inflow gas condition which is similar with the exhaust temperature of large marine diesel engine, this study found that the conversion efficiency of reductant of when relative big size urea solution droplets are injected into exhaust gas stream can be larger than that of when small size urea solution droplets are injected. According to results of this study, the reason was associated with decrease of reaction rate constant caused from temperature drop of inflow gas by assist air of twin fluid atomizer.

중실원추형 및 중공원추형 2유체 미립화기의 화재 소화 성능 검토: 공급 기체와 미분무 영향 (Examination on Fire Extinguishing Performance of Full Cone and Hollow Cone Twin-fluid Atomizers: Effects of Supply Gas and Water Mist)

  • 김동환;이치영
    • 한국화재소방학회논문지
    • /
    • 제33권5호
    • /
    • pp.28-36
    • /
    • 2019
  • 본 연구에서는 분사 형태(Spray pattern)가 중실원추형(Full cone) 및 중공원추형(Hollow cone)인 2유체 미립화기를 이용하여 공급 기체 및 미분무가 헵탄 풀화재(Heptane pool fire) 소화 성능에 미치는 영향을 검토하였다. 2유체 미립화기의 공급 기체로 30 lpm (Liter per minute; L/min)의 공기 또는 질소를 이용하였으며, 물을 공급하지 않은 경우(즉, 공기 또는 질소만 분사한 경우)와 물 0.085 lpm을 공급한 경우(즉, 미분무와 공급 기체를 함께 분사한 경우)에 대해 실험을 수행하였다. 실험 결과, 공급 기체만 분사한 경우보다 미분무와 공급 기체를 함께 분사한 경우에, 그리고 중공원추형인 경우보다 중실원추형인 경우에 빠르게 화재 소화 가능함을 확인하였다. 또한, 중실원추형의 경우, 미분무와 공급 기체 함께 분사 시 화재 소화 성능에 미분무의 영향은 지배적이었으나 공급 기체의 영향은 미비한 것으로 관찰되었다. 반면, 중공원추형의 경우, 중실원추형과 달리 미분무와 공급 기체 함께 분사 시 공급 기체로 질소를 공급한 경우가 공기를 공급한 경우에 비해 평균 화재 소화 시간이 확연하게 짧아지는 것으로 측정되었고, 이를 통해 미분무 뿐 아니라 공급 기체도 화재 소화 성능에 지대한 영향을 미칠 수 있음을 확인하였다.

Y-JET 2-유체 분무노즐 내부유동의 모델링 (Modeling of Nozzle Flow Inside a Y-JET Twin-Fluid Atomizer)

  • 인왕기;이상용;송시홍
    • 대한기계학회논문집
    • /
    • 제17권7호
    • /
    • pp.1841-1850
    • /
    • 1993
  • A simplified one-dimensional analysis has been performed to predict the local pressure distributions in Y-Jet twin-fluid atomizers. Fluid compressibility was considered both in the gas(air) and two-phase(mixing) ports. The annular-mist flow model was adopted to analyze the flow in the mixing port. A series of experiments also has been performed; the results show that the air flow rate increases and the liquid flow rate decreases with the increase of the air injection pressure and/or with the decrease of the liquid injection pressure. From the measured injection pressures and flow rates, the appropriate constants for the correlations of the pressure loss coefficients and the rate of drop entrainment were decided. The local pressures inside the nozzle by prediction reasonably agree with those by the experiments.

노즐 형상에 따른 Effervescent 이유체 노즐의 분무특성 (Atomization Characteristics of Effervescent Twin-fluid Nozzle with Different Nozzle Shapes)

  • 이상지;홍정구
    • 한국분무공학회지
    • /
    • 제22권3호
    • /
    • pp.146-152
    • /
    • 2017
  • An experimental study was carried out to investigate the spray characteristics of non-circular effervescent twin-fluid nozzles. For this purpose, two types of non-circular nozzles (E1, E2) and circular nozzle (C) were used. Three types of aerorators with hole diameters of 1.2, 1.7 and 2.1 mm were used. Each aerorator has a total of 12 holes. It is defined by area ratio which is ratio of exit orifice area and aerator hole area. Experiments were carried out by controlling the amount of air flowing after fixing the flow rate of the liquid, and the nozzle internal pressure and SMD were measured, and the jet image was taken from the nozzles. The discharge coefficients of the three kinds of nozzles were compared with the used in plain orifice's equation and the Jedelsky's equation, and the Jedelsky's equation was found to be about 3 times larger. In addition, empirical formula based on ALR, which is the largest variable in Jedelsky's equation, was derived. The droplet sizes(SMD) were found to be smaller in the non-circular shape than in the circular shape, which is concluded to be caused by the difference of the discharge coefficients.

불안정 이론을 이용한 2유체 노즐에서의 분무입경 예측 (Prediction of Mean Diameters Based on the Instability Theory for Twin Fluid Nozzle)

  • 김관태;안국영;김한석
    • 연구논문집
    • /
    • 통권25호
    • /
    • pp.47-54
    • /
    • 1995
  • The atomizing characteristics in a spray injected from a twin fluid atomization nozzle have been investigated. The Sauter mean diameters as mean diameter are compared with wavelength calculated from the instability theory. The Sauter mean diameter are measured by the Fraunhofer diffraction theory using the Malvern particle sizer. The wavelength is calculated using the mean relative velocity instead of the exit relative velocity of nozzle. Also shadowgraphy technique is used to visualize atomization. This paper gives a possibility that the mean diameter can be predicted with the wavelength obtained by the simple instability theory.

  • PDF

분무기용(噴霧機用) Nozzle의 구조(構造)에 관한 연구(硏究) (Study on the Structures of the Nozzle for the Spray)

  • 이상우
    • Journal of Biosystems Engineering
    • /
    • 제18권2호
    • /
    • pp.100-109
    • /
    • 1993
  • The aim of this study was to provide the reasonable data for design of the nozzle which produces finer droplets on the same level of the effective travel distance or which transports droplets to the farther target on the reasonable atomization in comparison with the commercial nozzles being used much in Korean rural areas. Newly designed twin-fluid atomizers with some commercial nozzles were tested in this study, and their results were as follows : 1. The characteristics of the spray deposit distribution of No.1 nozzles for farther target were nearly same in the near or nearer travel distance less than 8m. Therefore it was reasonable to combine the characteristics of the spray deposit distributions of No.2 and No.3 nozzles to those of No.1 nozzle. 2. The effective travel distance was increased with increase of the sectional area of the jet ligament, and the maximum effective travel distance was reached to about 17m. 3. The droplet size was increased with increase of the sectional area of the jet ligament, and the maximum droplet size was produced in the front of the point of the maximum spray deposit distribution. 4. The atomization was excellent in the twin-fluid atomizer in comparison with the hydraulic atomizer and also the effective travel distances were nearly same level in both atomizers.

  • PDF

기체주입 충돌제트의 분무특성에 관한 실험적 연구 (Experimental Study on the Spray Characteristics of Aerated Impinging Jets)

  • 이근석;윤영빈;안규복
    • 한국분무공학회지
    • /
    • 제24권4호
    • /
    • pp.185-193
    • /
    • 2019
  • The effervescent atomizer is one of twin-fluid atomizers that aeration gas enters into bulk liquid and two-phase flow is formed in the mixing section. The effervescent atomizer requires low injection pressure and small amount of aeration gas, as compared to other twin-fluid atomizers. In this study, cold flow test was conducted to investigate the spray characteristics of aerated impinging jets. The present effervescent impinging atomizers were composed of the aerator device and like-on-like doublet impinging atomizer which had different impinging angles. To analyze the spray characteristics such as breakup length and droplet size distribution, the image processing technique was adopted by using instantaneous images at each flow condition. Non-dimensional parameters, induced by the homogeneous flow model, were used to predict the breakup length. The breakup length was decreased with the mixture Reynolds number and impinging angle increasing. The result of droplets showed that the size distribution was axisymmetric about the center of the injector and their diameter tended to decrease with increasing GLR.

Urea-SCR에 적용되는 이유체 노즐의 분무특성에 관한 실험적 연구 (Experimental Study on Spray Characteristics of Twin Fluid Nozzle in Urea-SCR)

  • 박형선;홍정구
    • 한국분무공학회지
    • /
    • 제22권2호
    • /
    • pp.96-102
    • /
    • 2017
  • In order to reduce the NOx, SCR technology is most suitable. In this study, we focused on studying the injector part of urea-SCR system. When stoichiometric 1 mole of urea is injected, 2 moles of $NH_3$ are created. $NH_3$ causes a SCR reaction by reacting with NOx. However, urea is decomposed by the side reaction of coming out HNCO, deposit formation is formed. In this study, it was to design a nozzle that can spray the optimal spray flow rate. Test nozzle used in this experiment is efferverscent type. The result of the experiment, liquid flow rate was confirmed to be that they are dominated by the exit orifice diameter. The area ratio is defined by ratio of the area of exit orifice hole and that of aerorator. The droplet size was measured by varying the area ratios. In addition, it was also confirmed that there is no change of the liquid flow rate and air flow rate to change the aerorator at the same exit orifice. Further, It was confirmed that the droplet size was relatively uniform even though the area ratio was different. Finally, there is little change in the SMD that air flow rate increases in 0.3 or more ALR.

Y-jet 노즐의 설계인자와 SMD 측정방향에 따른 분무특성의 실험 연구 (Experiment Study on the Spray Characteristics according to the Design Factors and SMD Measuring Direction of Y-jet Nozzle)

  • 이상지;홍정구
    • 한국분무공학회지
    • /
    • 제23권4호
    • /
    • pp.205-211
    • /
    • 2018
  • Y-jet nozzle has various advantages over other twin-fluid nozzles and are used in industrial boilers. However, it costs large energy consumption because of assisted air and its design is complex. The Y-jet nozzle is consisted of a liquid and gas port and a mixing chamber. The diameter of the port and the length of the mixing chamber greatly affect spray and atomization characteristics, therefore, they are the most important factors in nozzle design. In this study, The experimental setup is consisted of a laboratory scale spray system. The characteristics of the Y-jet nozzle according to the design parameters were observed. As a result, it was found that the length of the mixing chamber did not have effect on the flow rate and the choking condition. The droplet size was measured using a Malvern type measuring device. In addition, measurements were conducted in the front and the right directions of the nozzles. Based on the results, the SMD View Ratio is defined. It is the asymmetrical design characteristics of the Y-jet nozzle.

산업용 Y-jet 노즐의 설계변수 및 압력 조건에 따른 분무특성에 관한 연구 (A Study on Spray Characteristics according to Design Parameters and Pressure Conditions of Industrial Y-jet Nozzle)

  • 이상지;홍정구
    • 한국분무공학회지
    • /
    • 제24권3호
    • /
    • pp.137-144
    • /
    • 2019
  • The Y-jet nozzle has benefits such as simple design and wide operating conditions. Because of these benefits, it is used in various combustion devices including industrial boilers. The most important variables in the design of the Y-jet nozzle are the mixing chamber length, the supply diameter of the liquid fuel and gas, and the exit orifice diameter. In addition, because of the use of a twin-fluid, optimized data is required depending on the spray condition. In this study, spray experiment was carried out under the pressure condition of 7 bar or more, which is the spraying condition used in industry. There was no change in flow rate with the length of the Y-jet nozzle mixing chamber, but the difference in SMD was confirmed. Adjusting the exit orifice diameter is most important to achieve the desired flow rate. Changes in the liquid and gas inlet port diameters ratio were found to be help improve the operating range and significant difference in SMD was observed.