• Title/Summary/Keyword: Tweet

Search Result 117, Processing Time 0.024 seconds

A study on the issue analysis of National Archives of Korea based on SNS(tweet) analysis between 2014~2015 (2014년~2015년 국가기록원 관련 트윗 이슈분석)

  • Seo, Ji-Won;Park, Jun-Hyeong;Oh, Hyo-Jung;Youn, Eunha
    • The Korean Journal of Archival Studies
    • /
    • no.50
    • /
    • pp.139-175
    • /
    • 2016
  • This study is a content analysis on the National Archives of Korea as reflected in tweets produced between 2014 and 2015. The study thus collected all tweets that used the key word 'National Archives of Korea' from 2014 and 2015. The contents of the tweets, including their category and issues mention, were then analyzed. The results of the analysis were as follows. First, the analysis showed that the collected archives of the National Archives had increased their volume in over two years, which have a similar type and pattern in their content. Second, the tweets produced by the public reflects more current political and social issues rather than archival service.

Coocurrence Relation Analysis and Visualization in Tweet for Food Safety Domain (식품안전 관련 트위터 정보의 연관 관계 분석 및 시각화)

  • So, Hyun-Su;Kang, Seung-Shik;Oh, Se-Wook
    • 한국어정보학회:학술대회논문집
    • /
    • 2016.10a
    • /
    • pp.305-306
    • /
    • 2016
  • 식품안전 사고가 발생했을 때 뉴스, 인터넷 기사를 통해 정보를 인지하기 전에 그 음식을 섭취하는 경우가 발생하는 문제점 최소화하기 위하여 실시간 트윗 분석으로 현재 발생한 식품안전 키워드와 어느 지역에서 발생했는지를 신속하게 파악하고, 키워드 연관관계 분석 프로그램을 활용하여 정확한 정보를 추출한다. 이와 더불어, SNS 등 다양한 정보 소스로부터 추출한 정보를 간단명료하게 파악하기 위해서 워드 클라우드 등 데이터 시각화 기법을 활용하여 시각화로 정보를 제공한다. 이 기법은 식품안전 뿐만 아니라 최근 발생한 콜레라 감염 발생과 같은 문제를 해결하기 위한 방법으로 활용될 수 있을 것이다.

  • PDF

Company Name Discrimination in Tweets using Topic Signatures Extracted from News Corpus

  • Hong, Beomseok;Kim, Yanggon;Lee, Sang Ho
    • Journal of Computing Science and Engineering
    • /
    • v.10 no.4
    • /
    • pp.128-136
    • /
    • 2016
  • It is impossible for any human being to analyze the more than 500 million tweets that are generated per day. Lexical ambiguities on Twitter make it difficult to retrieve the desired data and relevant topics. Most of the solutions for the word sense disambiguation problem rely on knowledge base systems. Unfortunately, it is expensive and time-consuming to manually create a knowledge base system, resulting in a knowledge acquisition bottleneck. To solve the knowledge-acquisition bottleneck, a topic signature is used to disambiguate words. In this paper, we evaluate the effectiveness of various features of newspapers on the topic signature extraction for word sense discrimination in tweets. Based on our results, topic signatures obtained from a snippet feature exhibit higher accuracy in discriminating company names than those from the article body. We conclude that topic signatures extracted from news articles improve the accuracy of word sense discrimination in the automated analysis of tweets.

Combining Deep Learning Models for Crisis-Related Tweet Classification (재난관련 트윗 분류를 위한 딥 러닝 결합 모델)

  • Choi, Won-Gyu;Lee, Kyung-Soon
    • Annual Conference on Human and Language Technology
    • /
    • 2018.10a
    • /
    • pp.649-651
    • /
    • 2018
  • 본 논문에서는 CNN에서 클래스 활성화 맵과 원샷 러닝을 결합하여 트위터 분류를 위한 딥 러닝 모델을 제안한다. 클래스 활성화 맵은 트윗 분류에 대한 분류 주제와 연관된 핵심 어휘를 추출하고 강조 표시하도록 사용되었다. 특히 작은 학습 데이터 셋을 사용하여 다중 클래스 분류의 성능을 향상시키기 위해 원샷 러닝 방법을 적용한다. 제안하는 방법을 검증하기위해 TREC 2018 태스크의 사건 스트림(TREC-IS) 학습데이터를 사용하여 비교실험을 했다. 실험 결과에서 CNN 기본 모델의 정확도는 58.1%이고 제안 방법의 정확도는 69.6%로 성능이 향상됨을 보였다.

  • PDF

A-List Twitter Users in Korea's Political Tweet Sphere

  • Hsu, Chien-Leng;Park, Ji-Young;Park, Han-Woo
    • International Journal of Contents
    • /
    • v.8 no.3
    • /
    • pp.7-11
    • /
    • 2012
  • This study examines A-list users in the Twitter network of National Assembly members in South Korea. An examination of some socio-geographic characteristics of these A-list users indicates that the distribution of these users in terms of their geographic location and social status can be understood in the context of the Korean social structure. In addition, an examination of Tweets posted by these users shows that half of these users had negative attitudes toward the current administration and that some Tweets contained emotional terms.

Hotspot Analysis of Korean Twitter Sentiments (한국어 트위터 감정의 핫스팟 분석)

  • Lim, Joasang;Kim, Jinman
    • Journal of Korea Multimedia Society
    • /
    • v.18 no.2
    • /
    • pp.233-243
    • /
    • 2015
  • A hotspot is a spatial pattern that properties or events of spaces are densely revealed in a particular area. Whereas location information is easily captured with increasing use of mobile devices, so is not our emotion unless asking directly through a survey. Tweet provides a good way of analyzing such spatial sentiment, but relevant research is hard to find. Therefore, we analyzed hotspots of emotion in the twitter using spatial autocorrelation. 10,142 tweets and related GPS data were extracted. Sentiment of tweets was classified into good or bad with a support vector machine algorithm. We used Moran's I and Getis-Ord $G_i^*$ for global and local spatial autocorrelation. Some hotspots were found significant and drawn on Seoul metropolitan area map. These results were found very similar to an earlier conducted official survey of happiness index.

Analysis and Implications of Twitter Data during the 2012 Election

  • Yun, Hongwon
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.19 no.6
    • /
    • pp.7-13
    • /
    • 2014
  • Twitter is a microblogging service that allows users to post short messages on a variety of topics in real-time. In this work, we analyze Twitter messages posted during the 2012 elections and find those implications. This study uses Twitter messages related to the 2012 South Korean presidential campaign. The three main candidates are represented by the abbreviations A, M, and P. According to the statistical analysis, the number of tweets and re-tweets for candidate P was relatively stable over the entire campaign period. Candidate P had the highest percentage of terms related to elections pledges, and candidates A and M were judged to be a little bit poorer with respect to campaign promises. The positive terms ratio for candidate P was higher than those for the other two candidates. The negative terms ratio in the Twitter messages of P was considerably smaller than those of candidates A and M. After considering all these results, it is suggested cautiously that Twitter messages posted during an election campaign could be correlated with the outcome of the election.

SNS Analysis Related to Presidential Election Using Text Mining (텍스트 마이닝을 활용한 대선 관련 SNS 분석)

  • Kwon, Young-Woo;Jung, Deok-Gil
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2017.05a
    • /
    • pp.361-363
    • /
    • 2017
  • 최근 소셜 미디어의 이용률이 폭발적으로 증가함에 따라, 방대한 데이터가 네트워크로 쏟아져 나오고 있다. 이들 데이터는 기존의 정형 데이터뿐만 아니라 이미지, 동영상 등의 비정형 데이터가 있으며, 이들을 포괄하여 빅데이터라고 불린다. 이러한 빅데이터는 오피니언 마이닝, 테스트 마이닝 등의 기술적인 분석 기법과 빅데이터 요약 및 효과적인 표현방법에 대한 시각화 기법에 대하여 활발한 연구가 이루어지고 있다. 이 논문은 인기 있는 사회연결망 서비스인 Twitter의 트윗을 수집하고, 빅데이터 분석 기법인 텍스트 마이닝을 활용하여 2017년 대선에 대하여 분석하였다. 또한 분석된 자료의 효과적인 전달을 위해 워드 클라우드 진행하였다. 이 논문을 위하여 인기 있는 SNS인 Twitter의 최근 7일간 트윗(tweet)을 수집하고 분석하였다.

  • PDF

Personalized Tweet Recommendation based on Ego-Network (이고-네트워크에 기반한 개인화된 트윗 추천 시스템)

  • Song, Sang-Chul;Hong, Jiwon;Kim, Sang-Wook
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2016.04a
    • /
    • pp.577-579
    • /
    • 2016
  • 트위터 이용자 수 증가로 인해, 유저의 타임라인에 하루 새롭게 기재되는 트윗 수가 급증하는 정보과다 현상이 중요한 이슈로 자리 잡은 지 오래다. 이에 본 논문은 이고-네트워크 정보를 바탕으로 학습 된 분류 시스템을 이용해 각각의 이고 유저마다 트윗 추천에 유리한 추천 방식을 예측하고, 이를 기반으로 선호할만한 트윗을 우선적으로 선별해주는 그래프 기반 트윗 추천 시스템을 제안한다. 실험을 통하여 단일한 추천 방식보다, 최고 11.5% 추천 정확도 성능이 향상함을 확인하였다.

Coocurrence Relation Analysis and Visualization in Tweet for Food Safety Domain (식품안전 관련 트위터 정보의 연관 관계 분석 및 시각화)

  • So, Hyun-Su;Kang, Seung-Shik;Oh, Se-Wook
    • Annual Conference on Human and Language Technology
    • /
    • 2016.10a
    • /
    • pp.305-306
    • /
    • 2016
  • 식품안전 사고가 발생했을 때 뉴스, 인터넷 기사를 통해 정보를 인지하기 전에 그 음식을 섭취하는 경우가 발생하는 문제점 최소화하기 위하여 실시간 트윗 분석으로 현재 발생한 식품안전 키워드와 어느 지역에서 발생했는지를 신속하게 파악하고, 키워드 연관관계 분석 프로그램을 활용하여 정확한 정보를 추출한다. 이와 더불어, SNS 등 다양한 정보 소스로부터 추출한 정보를 간단명료하게 파악하기 위해서 워드 클라우드 등 데이터 시각화 기법을 활용하여 시각화로 정보를 제공한다. 이 기법은 식품안전 뿐만 아니라 최근 발생한 콜레라 감염 발생과 같은 문제를 해결하기 위한 방법으로 활용될 수 있을 것이다.

  • PDF