• Title/Summary/Keyword: Tweet

Search Result 117, Processing Time 0.021 seconds

Influence on the Tweet Credibility and Attitude Toward Tweet of Tweet Content, Function and Involvement (트윗의 내용과 기능 그리고 관여도가 트윗 신뢰도와 태도에 미치는 영향)

  • Lee, Hyun-Ji;Chung, Donghun
    • The Journal of the Korea Contents Association
    • /
    • v.13 no.6
    • /
    • pp.137-147
    • /
    • 2013
  • The purpose of this study is to examine what variables influence on tweet credibility and attitude toward tweet. For this, the present research used the tweet content(information/opinion), tweet function(without URL and RT/URL/RT) and involvement(low/hight) as independent variables and applied a triangular research design which are in-depth interview, survey and computer usability testing software. Main findings are as follows. First, the participants read tweets listed in order regardless of tweet content, function and involvement. Second, there was a significant main effect of the tweet content on the tweet credibility and an interaction effect of those three independent variables on the attitude toward tweet. Finally, the in-depth interview showed that information is perceived to be more credible than opinion and URL>RT>just information or opinion are listed in order on the tweet credibility.

Relationship Between Tweet Frequency and User Velocity on Twitter (트위터에서 트윗 주기와 사용자 속도 사이 관계)

  • Jeon, So-Young;Lee, Al-Chan;Seo, Go-Eun;Shin, Won-Yong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.6
    • /
    • pp.1380-1386
    • /
    • 2015
  • Recently, the importance of users' geographic location information has been highlighted with a rapid increase of online social network services. In this paper, by utilizing geo-tagged tweets that provides high-precision location information of users, we first identify both Twitter users' exact location and the corresponding timestamp when the tweet was sent. Then, we analyze a relationship between the tweet frequency and the average user velocity. Specifically, we introduce a tweet-frequency computing algorithm, and show analysis results by country and by city. As a main result, it is shown that the tweet frequency according to user velocity follows a power-law distribution (i.e., Zipf' distribution or a Pareto distribution). In addition, by performing a comparison between the United States and Japan, one can see that the exponent of the distribution in Japan is smaller than that in the United States.

Issue summarization scheme based on real-time SNS trend analysis (실시간 SNS 트렌드 분석에 기반한 이슈 요약 기법)

  • Kim, Daeyong;Kim, Daehoon;Hwang, Eenjun
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2013.11a
    • /
    • pp.1096-1097
    • /
    • 2013
  • 최근 Twitter를 비롯한 소셜 네트워크 서비스의 급속한 확산으로 인해, 많은 수의 SNS 메시지가 실시간으로 생성되고 있다. 이러한 SNS 상의 모든 글을 읽어보는 것은 현실적으로 불가능하며, 여러 포탈 사이트에서 제공되는 실시간 검색어 순위만으로는 상세 내용을 직관적으로 파악하기 어렵다. 따라서, 이러한 SNS상의 글을 실시간으로 분석하여 최신의 트렌드를 찾고 이와 연관된 내용을 분류 및 요약할 수 있다면, 사용자에게 유용한 최신 정보를 생성하여 제공할 수 있다. 본 논문에서는 Tweet 들을 분석하여 얻은 트렌드 키워드를 기반으로 관련된 Tweet 들을 주제 별로 분류한 후, 각 주제 별로 세부 내용을 요약해서 제공하는 기법을 제안한다. 제안하는 기법은 실시간으로 생성되는 Tweet 내에서 최근 화제가 된 트렌드 및 연관 키워드를 추출해낸다. 그 후, 해당 키워드가 출현한 Tweet 내에서 핵심 키워드를 찾고, 이를 기반으로 Tweet 들을 각각의 주제별로 분류하고 각 주제를 '이슈'로 정의한다. 마지막으로, 특정한 이슈에 해당되는 Tweet들을 분석하여 각 이슈 별로 키워드 리스트 및 단문 형식으로 요약된 줄거리를 생성한다. 제안된 기법을 바탕으로 프로토타입 시스템을 구현하고, 다양한 실험을 통하여 이슈 검출 기법의 유용성 면에서 성능을 평가한다.

Improved Tweet Bot Detection Using Spatio-Temporal Information (시공간 정보를 사용한 개선된 트윗 봇 검출)

  • Kim, Hyo-Sang;Shin, Won-Yong;Kim, Donggeon;Cho, Jaehee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.12
    • /
    • pp.2885-2891
    • /
    • 2015
  • Twitter, one of online social network services, is one of the most popular micro-blogs, which generates a large number of automated programs, known as tweet bots because of the open structure of Twitter. While these tweet bots are categorized to legitimate bots and malicious bots, it is important to detect tweet bots since malicious bots spread spam and malicious contents to human users. In the conventional work, temporal information was utilized for the classficiation of human and bot. In this paper, by utilizing geo-tagged tweets that provide high-precision location information of users, we first identify both Twitter users' exact location and the corresponding timestamp, and then propose an improved two-stage tweet bot detection algorithm by computing an entropy based on spatio-temporal information. As a main result, the proposed algorithm shows superior bot detection and false alarm probabilities over the conventional result which only uses temporal information.

Tweet Entity Linking Method based on User Similarity for Entity Disambiguation (개체 중의성 해소를 위한 사용자 유사도 기반의 트윗 개체 링킹 기법)

  • Kim, SeoHyun;Seo, YoungDuk;Baik, Doo-Kwon
    • Journal of KIISE
    • /
    • v.43 no.9
    • /
    • pp.1043-1051
    • /
    • 2016
  • Web based entity linking cannot be applied in tweet entity linking because twitter documents are shorter in comparison to web documents. Therefore, tweet entity linking uses the information of users or groups. However, data sparseness problem is occurred due to the users with the inadequate number of twitter experience data; in addition, a negative impact on the accuracy of the linking result for users is possible when using the information of unrelated groups. To solve the data sparseness problem, we consider three features including the meanings from single tweets, the users' own tweet set and the sets of other users' tweets. Furthermore, we improve the performance and the accuracy of the tweet entity linking by assigning a weight to the information of users with a high similarity. Through a comparative experiment using actual twitter data, we verify that the proposed tweet entity linking has higher performance and accuracy than existing methods, and has a correlation with solving the data sparseness problem and improved linking accuracy for use of information of high similarity users.

Improved Tweet Bot Detection Using Geo-Location and Device Information (지리적 공간과 장치 정보를 사용한 개선된 트윗 봇 검출)

  • Lee, Al-Chan;Seo, Go-Eun;Shin, Won-Yong;Kim, Donggeon;Cho, Jaehee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.12
    • /
    • pp.2878-2884
    • /
    • 2015
  • Twitter, one of online social network services, is one of the most popular micro-blogs, which generates a large number of automated programs, known as tweet bots because of the open structure of Twitter. While these tweet bots are categorized to legitimate bots and malicious bots, it is important to detect tweet bots since malicious bots spread spam and malicious contents to human users. In the conventional work, temporal information was utilized for the classficiation of human and bot. In this paper, by utilizing geo-tagged tweets that provide high-precision location information of users, we first identify both Twitter users' exact location. Then, we propose a new tweet bot detection algorithm by using both an entropy based on geographic variable of each user and device information of each user. As a main result, the proposed algorithm shows superior bot detection and false alarm probabilities over the conventional result which only uses temporal information.

Predicting the Lifespan and Retweet Times of Tweets Based on Multiple Feature Analysis

  • Bae, Yongjin;Ryu, Pum-Mo;Kim, Hyunki
    • ETRI Journal
    • /
    • v.36 no.3
    • /
    • pp.418-428
    • /
    • 2014
  • In social network services, such as Facebook, Google+, Twitter, and certain postings attract more people than others. In this paper, we propose a novel method for predicting the lifespan and retweet times of tweets, the latter being a proxy for measuring the popularity of a tweet. We extract information from retweet graphs, such as posting times; and social, local, and content features, so as to construct prediction knowledge bases. Tweets with a similar topic, retweet pattern, and properties are sequentially extracted from the knowledge base and then used to make a prediction. To evaluate the performance of our model, we collected tweets on Twitter from June 2012 to October 2012. We compared our model with conventional models according to the prediction goal. For the lifespan prediction of a tweet, our model can reduce the time tolerance of a tweet lifespan by about four hours, compared with conventional models. In terms of prediction of the retweet times, our model achieved a significantly outstanding precision of about 50%, which is much higher than two of the conventional models showing a precision of around 30% and 20%, respectively.

An Efficient Method for Design and Implementation of Tweet Analysis System (효율적인 트윗 분석 시스템 설계 및 구현 방법)

  • Choi, Minseok
    • Journal of Digital Convergence
    • /
    • v.13 no.2
    • /
    • pp.43-50
    • /
    • 2015
  • Since the popularity of social network services (SNS) rise, the data produced from them is rapidly increased. The SNS data includes personal propensity or interest and propagates rapidly so there are many requests on analyzing the data for applying the analytic results to various fields. New technologies and services for processing and analyzing big data in the real-time are introduced but it is hard to apply them in a short time and low coast. In this paper, an efficient method to build a tweet analysis system without inducing new technologies or service platforms for handling big data is proposed. The proposed method was verified through building a prototype monitoring system to collect and analyze tweets using the MySQL database and the PHP scripts.

A Method of Classifying Tweet by subject using features (특징추출을 이용한 트위터 메시지 주제 분류 방법)

  • Song, Ji-min;Kim, Han-woo;Kim, Dong-joo;Jung, Sung-hoon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2014.05a
    • /
    • pp.905-907
    • /
    • 2014
  • Twitter is the special place that people in the world can freely share their information and opinion. There are tries to utilize a vast amount of information made from twitter. The study on classification of tweets by subject is actively conducted. Twitter is a service for sharing information with short 140-characters text message. The short message including brief content makes extracting a variety of information hard. In the paper, we suggests the method to classify tweet by subject. The method uses both tweet and subject features. In order to conduct experiments to verify the proposed method, we collected 10,000 tweet messages with the Twitter API. Through the experimental results, we will show that the performance of our proposed method is better than those of previous methods.

  • PDF

Discovery of Urban Area and Spatial Distribution of City Population using Geo-located Tweet Data (위치기반 트윗 데이터를 이용한 도심권 추정과 인구의 공간분포 분석)

  • Kim, Tae Kyu;Lee, Jin Kyu;Cho, Jae Hee
    • Journal of Information Technology Services
    • /
    • v.18 no.1
    • /
    • pp.131-140
    • /
    • 2019
  • This study compares and analyzes the spatial distribution of people in two cities using location information in twitter data. The target cities were selected as Paris, a traditional tourist city, and Dubai, a tourist city that has recently attracted attention. The data was collected over 123 days in 2016 and 125 days in 2018. We compared the spatial distribution of two cities according to the two periods and residence status. In this study, we have found a hot place using a spatial statistical model called dart-shaped space division and estimated the urban area by reflecting the distribution of tweet population. And we visualized it as a CDF (cumulative distribution function) curve so that the distance between all the tweets' occurrence points and the city center point can be compared for different cities.