• Title/Summary/Keyword: Turnip mosaic virus

Search Result 39, Processing Time 0.025 seconds

Virulence Differentiation of Eight Turnip mosaic virus Isolates Infecting Cruciferous Crops

  • Choi, Hong-Soo;Sohn, Seong-Han;Yoon, Moo-Kyoung;Cheon, Jeong-Uk;Kim, Jeong-Soo;Were, Hassan Karakacha;Cho, Jang-Kyung;Kim, Kook-Hyung;Takanami, Yoichi
    • The Plant Pathology Journal
    • /
    • v.21 no.4
    • /
    • pp.369-376
    • /
    • 2005
  • Turnip mosaic virus (TuMV) is an infectious viral pathogen on the cruciferous crops, predominantly Chinese cabbage (Brassica campestris subsp. pekinensis) and radish (Raphanus sativus). On the basis of the symptom development in selective differential hosts from indicator host species, Chinese cabbage and Korean radish inbred lines, the representative eight isolates of TuMV were divided into two major groups/or six types. Group I includes Th 1, Ca-ad7, and Cj-ca2-1 isolates, while group II includes the other isolates (rg-pfl, r 9-10, Rhcql-2, Stock and Mustard). According to the molecular phylogenetic analysis, these isolates, however, divided into two groups and two independent isolates. Phylogenetic analysis indicated that four isolates (Tu 1, r9-10, Stock and Rh-cql-2) formed a distinct phylogenetic group, and the other two isolates (Ca-ad7 and Cj-ca2-1) also formed another group. Mustard and rg-pfl isolates did not seem to have any relationship with these two groups. Taken together, these results indicated that virulence differentiation on host plants, molecular phylogenetic analysis of the nucleotide and the deduced amino acid of TuMV coat proteins did not show any relationship. The multi-resistant lines, Wonyae 20026 and BP058 in Chinese cabbage represent valuable genetic materials that can be used for crucifer breeding programs on TuMV resistance, but not in Korean radish.

Modification of Turnip yellow mosaic virus coat protein and its effect on virion assembly

  • Shin, Hyun-Il;Chae, Kwang-Hee;Cho, Tae-Ju
    • BMB Reports
    • /
    • v.46 no.10
    • /
    • pp.495-500
    • /
    • 2013
  • Turnip yellow mosaic virus (TYMV) is a positive strand RNA virus. We have modified TYMV coat protein (CP) by inserting a c-Myc epitope peptide at the N- or C-terminus of the CP, and have examined its effect on assembly. We introduced the recombinant CP constructs into Nicotiana benthamiana leaves by agroinfiltration. Examination of the leaf extracts by agarose gel electrophoresis and Western blot analysis showed that the CP modified at the N-terminus produced a band co-migrating with wild-type virions. With C-terminal modification, however, the detected bands moved faster than the wild-type virions. To further examine the effect, TYMV constructs producing the modified CPs were prepared. With N-terminal modification, viral RNAs were protected from RNase A. In contrast, the viral RNAs were not protected with C-terminal modification. Overall, the results suggest that virion assembly and RNA packaging occur properly when the N-terminus of CP is modified, but not when the C-terminus is modified.

Survey of Viruses Present in Radish Fields in 2014 (2014년 전국 무 재배지의 바이러스 병 발생 조사)

  • Chung, Jinsoo;Han, Jae-Yeong;Kim, Jungkyu;Ju, Hyekyoung;Gong, Junsu;Seo, Eun-Young;Hammond, John;Lim, Hyoun-Sub
    • Research in Plant Disease
    • /
    • v.21 no.3
    • /
    • pp.235-242
    • /
    • 2015
  • A 2014 nationwide survey in radish fields investigated the distribution of common viruses and possible emerging viruses. Radish leaves with virus-like symptoms were collected and 108 samples assayed by RT-PCR using specific primers for Radish mosaic virus (RaMV), Cucumber mosaic virus (CMV), and Turnip mosaic virus (TuMV); 47 samples were TuMV positive, and RaMV and CMV were detected in 3 and 2 samples, respectively. No samples showed double infection of TuMV/RaMV, or RaMV/CMV, but two double infections of TuMV/CMV were detected. TuMV isolates were sorted by symptom severity, and three isolates (R007-mild; R041 and R065-severe) selected for BLAST and phylogenetic analysis, which indicated that the coat protein (CP) of these isolates (R007, R041, and R065) have approx. 98-99% homology to a previously reported TuMV isolate. RaMV CP showed approx. 99% homology to a previously reported isolate, and the CMV CP is identical to a previously reported Korean isolate (GenBank : GU327368). Three isolates of TuMV showing different pathogenicity (degree of symptom severity) will be valuable to study determinants of pathogenicity.

Detection of Plant RNA Viruses by Hybridization Using In Vitro Transcribed RNA Probes (In Viro 전사 RNA Probe를 이용한 식물 바이러스병의 진단)

  • 최장경;이종희;함영일
    • Korean Journal Plant Pathology
    • /
    • v.11 no.4
    • /
    • pp.367-373
    • /
    • 1995
  • The cDNAs derived from the coat protein (CP) genes of six plant RNA viruses, tobacco mosaic virus-pepper strains (TMV-P) and -ordinary strain (TMV-OM), potato virus Y (PVY), turnip mosaic virus (TuMV), cucumber mosaic virus (CMV) and potato leafroll virus (PLRV), were subcloned into the transcription vector, pSPT18, containing SP6 and T7 promoters. The digoxigenin (DIG)-labeled RNA polymerase after linearlization of the cloned pSPTs with XbaI or SacI, and were tested for their sensitivities for the detection of the six viruses. In slot-blot hybridization, dilution end points for the detection of TMV-P and TMV-OM were 10-4, while those of PVY, TuMV and CMV were 10-3. PLRV was detected at the dilution of 10-2. When each RNA probe was applied for the detection of the viruses in the preparations from the leaf disks (8 mm in diameter, and 12 to 15 mg in weight) of infected natural host plants, TMV-P, TMV-OM and TuMV could be detected from one disk, while PVY from 1 or 2 disks. CMV was detected in the preparation from two disks, and PLRV from three disks. With DIG-labeled RNA probe, PVY was detected at 5 days after inoculation, but with ELISA the virus was detected at 8 days after inoculation to tobacco (Nicotiana tabacum cv. Xanthi nc) plants on which symptoms appeared at 9 days after inoculation. No difference was observed in cross reaction between the RNA probes for the detection of TMV-P and TMV-OM.

  • PDF

Ultrastructural Aspects of Mixed Infections with Turnip mosaic virus (TuMV- ACl8 and -C5) and Ribgrass mosaic virus (RMV-CA1) in Oriental Cabbage

  • Cho, Jeom-Deog;Park, Hong-Soo;Kim, Jeong-Soo;La, Yong-Jun;Kim, Kyung-Soo
    • The Plant Pathology Journal
    • /
    • v.18 no.4
    • /
    • pp.192-198
    • /
    • 2002
  • Mixed infections of two economically important viruses, Turnip mosaic virus(TuMV) in the family Potyviridae and Ribgrass mosaic virus(RMV) in the genus Tobamo-virus, were studied ultrastructurally on oriental cabbage. TuMV-ACl8 (alpine isolate in Korea) induced chlorotic spots on inoculated leaves of both ‘SSD63’ inbred line known as susceptible to TuMV, and ‘Tambok’ commercial cultivar, known as resistant to the virus, in the early stages of infection. TuMV-C5 (Taiwan isolate) caused severe mosaic and malformation on the upper leaves of ‘SSD63’, and necrotic spots in both inoculated and upper leaves of ‘Tambok’. RMV-CA1 (oriental cabbage isolate from alpine in Korea) induced vein chlorosis, leaf malformation, and midrib necrotic streak in the upper leaves of both ‘SSD63’ and ‘Tambok’. Both oriental cabbages infected with a combination of TuMV-ACl8 and RMV-CA1 showed synergistic symptoms of severe yellowing, severe mosaic, and necrotic spot or vein necrosis on their leaves. A combination of TuMV-C5 and RMV-CA1 produced synergistic symptoms only in ‘SSD63’. In ‘Tambok’ infected with the combination of TuMV-C5 and RMV-CA1, the number of necrotic spots on the inoculated leaves was one half lesser than that on singly infected with TuMV-C5. A few necrotic spots progressed systemically. In cells infected with a combination of TuMV-ACl8 and RMV-CA1 or TuMV-C5 and RMV-CA1, the particles of the two viruses made nonagon-like rings(NLR); one TuMV particle was surrounded loosely by nine RMV particles. Two unrelated viruses of TuMV and RMV were compacted in the central part of the spiral aggregates(SA) that was induced strikingly in cells by the mixed infections. The SA showed NLR in its center of the cross-sectioned side. Many particles of RMV of Tobamovirus were closely associated with Potyvirus-characteristic cylindrical inclusions. The SAs in the mixed infections were formed easily by the Potyvirus of TuMV-ACl8 or -C5 isolates.

Five Newly Collected Turnip Mosaic Virus (TuMV) Isolates from Jeju Island, Korea are Closely Related to Previously Reported Korean TuMV Isolates but Show Distinctive Symptom Development

  • Hu, Wen-Xing;Kim, Byoung-Jo;Kwak, Younghwan;Seo, Eun-Young;Kim, Jung-Kyu;Han, Jae-Yeong;Kim, Ik-Hyun;Lim, Yong Pyo;Cho, In-Sook;Domier, Leslie L;Hammond, John;Lim, Hyoun-Sub
    • The Plant Pathology Journal
    • /
    • v.35 no.4
    • /
    • pp.381-388
    • /
    • 2019
  • For several years, temperatures in the Korean peninsula have gradually increased due to climate change, resulting in a changing environment for growth of crops and vegetables. An associated consequence is that emerging species of insect vector have caused increased viral transmission. In Jeju Island, Korea, occurrences of viral disease have increased. Here, we report characterization of five newly collected turnip mosaic virus (TuMV) isolates named KBJ1, KBJ2, KBJ3, KBJ4 and KBJ5 from a survey on Jeju Island in 2017. Full-length cDNAs of each isolate were cloned into the pJY vector downstream of cauliflower mosaic virus 35S and bacteriophage T7 RNA polymerase promoters. Their fulllength sequences share 98.9-99.9% nucleotide sequence identity and were most closely related to previously reported Korean TuMV isolates. All isolates belonged to the BR group and infected both Chinese cabbage and radish. Four isolates induced very mild symptoms in Nicotiana benthamiana but KBJ5 induced a hypersensitive response. Symptom differences may result from three amino acid differences uniquely present in KBJ5; Gly(382)Asp, Ile(891)Val, and Lys(2522)Glu in P1, P3, and NIb, respectively.

Modeling for Prediction of the Turnip Mosaic Virus (TuMV) Progress of Chinese Cabbage (배추 순무모자이크바이러스(TuMV)병 진전도 예측모형식 작성)

  • 안재훈;함영일
    • Korean Journal Plant Pathology
    • /
    • v.14 no.2
    • /
    • pp.150-156
    • /
    • 1998
  • To develop a model for prediction of turnip mosaic virus(TuMV) disease progress of Chinese cabbage based on weather information and number of TuMV vector aphids trapped in Taegwallyeong alpine area, data were statistically processed together. As the variables influenced on TuMV disease progress, cumulative portion(CPT) above 13$^{\circ}C$ in daily average temperature was the most significant, and solar radiation, duration of sunshine, vector aphids and cumulative temperature above $0^{\circ}C$ were significant. When logistic model and Gompertz model were compared by detemining goodness of fit for TuMV disease progress using CPT as independent variable, regression coefficient was higher in the logistic model than in the Gompertz model. Epidemic parameters, apparent infection rate and initial value of logistic model, were estimated by examining the relationship between disease proportion linearized by logit transformation equation, In(Y/Yf-Y) and CPT. Models able to describe the progression of TuMV disease were formulated in Y=100/(1+128.4 exp(-0.013.CPT.(-1(1/(1+66.7.exp(-0.11.day). Calculated disease progress from the model was in good agreement with investigated actual disease progress showing high significance of the coefficient of determination with 0.710.

  • PDF

Molecular Detection and Analysis of Sweet potato feathery motile vims from Root and Leaf Tissues of Cultivated Sweet Potato Plants

  • Ryu, Ki-Hyun;Park, Sun-Hee
    • The Plant Pathology Journal
    • /
    • v.18 no.1
    • /
    • pp.12-17
    • /
    • 2002
  • For the molecular detection of Sweet potaio feathery mottle virus (SPFMV) from diseased sweet potato plants, reverse transcription and polymerase chain reaction (RT-PCR) was performed with the use of a set of virus-specific primers to amplify an 816 bp product. The viral coat protein gene was selected for the design of the primers. No PCR product was amplified when Turnip mosaic virus, Potato vims Y or Cucumber mosaic virus were used as template in RT-PCR with the SPFMV-specific primers. The lowest concentration of template viral RNA required for detection was 10 fg. The vim was rapidly detected from total nucleic acids of leaves and roots from the virus-infected sweet potato plants as well as from the purified viral RNA by the RT-PCR. Twenty-four sweet potato samples were selected and analyzed by RT-PCR and restriction fragment length polymorphism (RFLP). RFLP analysis of the PCR products showed three restriction patterns, which resulted in some point mutations suggesting the existence of quasi-species for the vims in the infected sweet potato plants.

Ultrastructural Differences in Mixed Infections of Six Turnip mosaic virus and One Ribgrass mosaic virus Isolates in Crucifers

  • Kim, Jeong-Soo;Cho, Jeom-Deog;Park, Hong-Soo;Kim, Kook-Hyung;Kim, Kyung-Soo
    • The Plant Pathology Journal
    • /
    • v.19 no.2
    • /
    • pp.117-122
    • /
    • 2003
  • Six isolates of Turnip mosaic Potyvirus (TuMV) namely, TuMV-CA7 from oriental cabbage, TuMV-TU and TuMV-TU2 from turnip, TuMV-RA from rape, TUMV-ST from stock, and TuMV-R9 from radish, and Ribgrass mosaic Tobamovirus (RMV-FG22) from oriental cabbage were isolated. Three kinds of characteristics of the six TuMV isolates were sorted by bioassay: TuMV-CA7 and TuMV-TU isolates infected mostly oriental cabbages; TuMV-ST, TuMV-TU2, and TuMV-R9 infected radishes; and TuMV-RA infected both oriental cabbages and radishes. Mixed infections of crucifers were RMV-FG22+TuMV-CA7, RMV-FG22+TuMV-TU, RMV-FG22+TuMV-RA, RMV-FG22+TuMV-ST, RMV-FG22 +TuMV-TU2 and RMV-FG22+TuMV-R9. Crops used were 'Tambok' cultivar resistant to TuMV, 'SSD63' susceptible inbred line of oriental cabbage, pure line of leaf mustard and 'Daeburyungyeorum' cultivar of radish. New specific ultrastructures of nonagon-like ring (NLR) and spiral aggregates (SA) by mixed infection with TuMV and RMV were formed in cells of crucifer plants. The NLR was made by a TuMV surrounded loosely by nine RMV particles, and the SA was formed spirally by full mixed of two virus particles. The SA had some NLR in its center, which was observed from cross sectioned SA. Host plants with specific ultrastructures expressed synergistic symptoms. Specific ultrastructures of NLR and SA were formed in combinations of RMV-FG22 and in TuMV-CA7, TuMV-TU, or TuMV-RA that could infect oriental cabbages. How-ever, no specific ultrastructures and mixing of the two virions in the same cell were observed in combinations of RMV-FG22, and TuMV-57, TuMV-TU2, or TuMV-R9 isolates haying virulence in radishes.