• Title/Summary/Keyword: Turning-on time

Search Result 408, Processing Time 0.023 seconds

Kinematical Analysis of Basket with 1/2 Turn to Handstand on Parallel Bars (평행봉 Basket with 1/2 Turn to Handstand 기술 분석)

  • Back, Jin-Ho;Park, Jong-Chul;Lee, Yong-Sik
    • Korean Journal of Applied Biomechanics
    • /
    • v.17 no.1
    • /
    • pp.165-174
    • /
    • 2007
  • The subject of this study was male apparatus gymnastics athlete who had scored high points doing basket with 1/2 turn on parallel bars. Then 3D motion analysis were used to calculate & analyse kinematic variables of Basket with 1/2 turn to Handstand. 1. The total average time spent for Basket with 1/2 turn took $2.16{\pm}.08sec$, at the downward upward phase took $.58{\pm}0.00sec$, $.23{\pm}.00sec$, at flight phase took $.28{\pm}.01sec$, at connected area phase took $.72{\pm}0.21sec$, at rotation area phase took $.35{\pm}.14sec$. To have a successful performance, there should be faster speed and velocity to rotate at the downward upward phase, then the upward velocity and height must be used adequately. Moreover, the speed must be faster at the flight connect phase to stabilize Center of Mass(CM) for the body, and must secure more time at the rotation area to have more stable performance. 2. After handstand on parallel bars while moving CM to right hand side, and It must be performed with big and magnificent performance with putting both hand's center to far away from the parallel bars. 3. Furthermore, CM must be moved fast from downwards to right hand side, and CM must be moved fast in vertical movement at upward and flight phase to avoid CM from moving back and forth, and left and right. 4. At downwards, the subject must rotate as bis as possible using hip-joint as wide as possible and at upwards, must put his body to vertical to have stable performance. While rotating or turning, it is better to do with bigger shoulder angle and have to make sure that trunk angle must be not scattered. To perform better and more positive in basket with 1/2 turn on parallel bars, the centrifugal force must be used big and fast at downward, and at upward and flight phase, downward movement must change to vertical movement as soon as possible while turning movement must happen at handstand position. Time spent must be shorten at connected area to stabilize CM and turning must be natural as possible while securing the necessary time of movement to well-balanced. Also, the body must be vertically closed from the ground.

Development of Android Application for Wireless Control of Omnidirectional Biped Walking of Humanoid Robot (휴머노이드 로봇의 전방향 이족보행 원격제어를 위한 안드로이드 애플리케이션 개발)

  • Park, GyuYung;Yun, JaeHun;Choi, YoungLim;Kim, Jong-Wook
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.2
    • /
    • pp.223-231
    • /
    • 2014
  • Humanoid robot is the most suitable robot platform for effective human interaction and various intelligent services. The present work addresses development of real time wireless control application of humanoid robot's forward and backward walks, and turning in walking. For convenience of human users, the application is developed on Android OS (Operating System) working on his or her smartphone. To this end, theoretic background on various-directional biped walking is proposed based on joint trajectories for forward walking, which have been shaped with a global optimization method. In this paper, backward walking is scheduled by interchange of angles and angular velocities and additional change of signs in angular velocities at all the via-points connecting cubic polynomial trajectories. Turning direction in walking is also implemented by activating the transversal hip joint initially located in the support leg in two stages. After validation of the proposed walking schemes with Matlab simulator, a smartphone application for the omnidirectional walking has been developed to control a humanoid robot platform named DARwIn-OP interconnected via Wi-Fi. Experiment result of the present wireless control of a humanoid robot with smartphone is successful, and the application will be released in application market near future.

Autonomic Period Determination for Variable Rate Limiter of Virus Throttling (바이러스 감속기의 가변 비율 제한기를 위한 자율적 주기 결정)

  • Shim, Jae-Hong;Sohn, Jang-Wan
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.1C
    • /
    • pp.67-77
    • /
    • 2007
  • Virus throttling technique, one of many early worm detection techniques, detects Internet worm propagation by limiting connect requests within a certain ratio. The typical virus throttling controls the period of rate limiter autonomically by utilizing weighted average delay queue length to reduce connection delay time without hanving a large effect on worm detection time. In the existing virus throttling research, a minimum period of variable rate limiter is fired and a turning point which is a point that the period of rate limiter has been being decreased and starts to be increased is also fixed. However, these two performance factors have different effects on worm detection time and connection delay. In this paper, we analyze the effect of minimum period and turning point of variable rate limiter, and then propose an algorithm which determines values of performance factors by referencing current traffic pattern. Through deep experiments, it is verified that the proposed technique is more efficient in respect of reducing worm detection time and connection delay than the existing virus throttling which fixed the performance factors.

Development of a Path Generation and Tracking Algorithm for a Korean Auto-guidance Tillage Tractor

  • Han, Xiong-Zhe;Kim, Hak-Jin;Moon, Hee-Chang;Woo, Hoon-Je;Kim, Jung-Hun;Kim, Young-Joo
    • Journal of Biosystems Engineering
    • /
    • v.38 no.1
    • /
    • pp.1-8
    • /
    • 2013
  • Purpose: Path planning and tracking algorithms applicable to various agricultural operations, such as tillage, planting, and spraying, are needed to generate steering angles for auto-guidance tractors to track a point ahead on the path. An optimal coverage path algorithm can enable a vehicle to effectively travel across a field by following a sequence of parallel paths with fixed spacing. This study proposes a path generation and tracking algorithm for an auto-guided Korean tractor with a tillage implement that generates a path with C-type turns and follows the generated path in a paddy field. A mathematical model was developed to generate a waypoint path for a tractor in a field. This waypoint path generation model was based on minimum tractor turning radius, waypoint intervals and LBOs (Limit of Boundary Offsets). At each location, the steering angle was calculated by comparing the waypoint angle and heading angle of the tractor. A path following program was developed with Labview-CVI to automatically read the waypoints and generate steering angles for the tractor to proceed to the next waypoint. A feasibility test of the developed program for real-time path tracking was performed with a mobile platform traveling on flat ground. The test results showed that the developed algorithm generated the desired path and steering angles with acceptable accuracy.

Development of Left Turn Response System Based on LiDAR for Traffic Signal Control

  • Park, Jeong-In
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.11
    • /
    • pp.181-190
    • /
    • 2022
  • In this paper, we use a LiDAR sensor and an image camera to detect a left-turning waiting vehicle in two ways, unlike the existing image-type or loop-type left-turn detection system, and a left-turn traffic signal corresponding to the waiting length of the left-turning lane. A system that can efficiently assign a system is introduced. For the LiDAR signal transmitted and received by the LiDAR sensor, the left-turn waiting vehicle is detected in real time, and the image by the video camera is analyzed in real time or at regular intervals, thereby reducing unnecessary computational processing and enabling real-time sensitive processing. As a result of performing a performance test for 5 hours every day for one week with an intersection simulation using an actual signal processor, a detection rate of 99.9%, which was improved by 3% to 5% compared to the existing method, was recorded. The advantage is that 99.9% of vehicles waiting to turn left are detected by the LiDAR sensor, and even if an intentional omission of detection occurs, an immediate response is possible through self-correction using the video, so the excessive waiting time of vehicles waiting to turn left is controlled by all lanes in the intersection. was able to guide the flow of traffic smoothly. In addition, when applied to an intersection in the outskirts of which left-turning vehicles are rare, service reliability and efficiency can be improved by reducing unnecessary signal costs.

A Study on the Interconnection Technology between Tablet Device and Interactive White Board System (태블릿 기기와 전자칠판 시스템 간의 연동 기술 연구)

  • Choi, Yun-Su;Hwang, Min-Tae
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.7
    • /
    • pp.1719-1727
    • /
    • 2015
  • In this paper we have studied about the interconnection technology between tablet device and interactive white board(IWB) system. For this study we have implemented the board writing software for both tablet device and interactive white board system which has contents management, page turning and basic writing functions. Then we defined the data format to communicate the control information and board writing information between two devices, and implemented the communication module for the real-time bidirectional communication by using the Socket programming. The page turning or writing information on tablet device were transferred to the IWB system in real-time and vice versa. From the result of performance test based on the error rate, latency time and communication coverage we derived that our implementation software has good performance between tablet device and IWB system. Also from the result of field test we proved that our solution is well suitable to use in real education environment.

Studies on Efficient Plowing Methods and the Shapes of Field for 4 Wheel Tractor (사수트렉터를 위한 효율적인 정기방법과 포장형상에 관한 연구)

  • 원장우
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.12 no.3
    • /
    • pp.2019-2028
    • /
    • 1970
  • 1. Experiments were made for the efficient plowing method by the 4 wheel tractor, the results are as follow; 1) In case of plowing of inner side of the field, the efficient turning method to be the smallest turning time is the $\Omega$-shaped turning method in the turning distance less than 2r (r is the minimum turning radius of the tractor), and also, it is the U-shaped turning method in the turning distance larger than 2r. 2) 2.5r is most efficient in the unit turning section 'w' on plowing of the inner side of the field. 3) In case of plowing of outer side of the field, intermitted plowing method is efficient in case of W>-0.0345 L + 35.84, and also, semi-followed plowing method is efficient in case of W<-0.0345 L + 35.84. 4) The smaller the width of outer side of outer side of the field 'I' is, the higher is the plowing efficiency, and it is estimated that the minimum value 2r is suitable to 'I' in plowing of inner side and outer side of the field. 2. Study on the correlation between the unit field and plowing efficiencies obtained the following results; 1) plowing efficienies increase generally according as length-width ratio L/W and area A increase. 2) Percent of increase of plowing efficiencies decreases generally according as length-width ratio and area enlarge. 3) The limit that change of T is large owing to L/W is 6 for 20 a, 5 for 30 a, 4 for 50 a, 3 for 80 a, less than 2.5 for 100 a, generally, in L/W-T curve. 4) Rate of change of T-A curve is similar to rate of change of $T=A-\frac{2}{3}$ curve in spite of influence of L/W. 5) In case that length-width ratio is more than 3, effects of increase of 10 a area influenced upon plowing efficiencies are as much as effects of about 5 increase of length width ratio without correlation of size of the field. 6) In case that length-width ratio is 2 to 3, effects of increase of 10 a area influenced upon plowing efficiencies are as much as effects of about 4 to 2 increase of length-width ratio without correlation of size of the field, and the effects decrease according as not only length-width ratio decreases but also area increases, generally.

  • PDF

Turning Machining Optimization using Software Based on Cutting Force Model (절삭력 모델 기반의 소프트웨어를 이용한 선삭가공최적화)

  • Ahn, Kwang-Woo;Jeon, Eon-Chan;Kim, Tae-Ho
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.14 no.5
    • /
    • pp.107-112
    • /
    • 2015
  • Increased productivity and cost reduction have emerged as the main goals of the industry due to the development of the machinery industry, and mechanical materials with excellent properties with the development of the machine tool industry are widely used in machine parts or structures. In addition, the cutting process of production plays a pivotal role in the production technology. Studies on cutting have involved a lot of research on the material, the cutting tool, the processing conditions, and numerical analysis. Due to the development of the computer through numerical analysis, cutting conditions, the assessment of cutting performance, and cutting quality could be predicted. This research uses the creation of the material model and AdvantEdge Production module for the NC code analysis. To improve the productivity, this research employs the optimization method to reduce cutting time.

Loads of NREL Phase VI Rotor at Hub in Yawed Conditions (요 상태에서 NREL Phase VI 로터의 허브 중심 하중 예측)

  • Ryu, Ki-Wahn
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.12
    • /
    • pp.841-847
    • /
    • 2019
  • Time series data of 6-component loads were computed for a horizontal axis wind turbine rotor in yawed operating conditions with both rotating and non-rotating coordinate systems fixed at a center of a rotor hub. In this study, a well-known 20 kW class of the NREL Phase VI rotor was used for a model wind turbine, and this paper focuses on the yaw moments and over-turning moments for the operating wind speed range between 6 to 25 m/s. Unsteady blade element momentum theorem was adopted to get the aerodynamic loads acting on the wind turbine rotor. Computed 6-component loads using the developed UBEM code were compared with those using the NREL FAST program. From the computed results, both yaw and over-turning moments would be basic inputs to determine not only the specification of yawing mechanism but also the design condition of foundation.

Nonlinear Phenomena In Resonant Excitation of Flexural-Gravity Waves

  • Marchenko, Aleksey
    • Journal of Ship and Ocean Technology
    • /
    • v.7 no.3
    • /
    • pp.1-12
    • /
    • 2003
  • The influence of nonlinear phenomena on the behavior of stationary forced flexural-gravity waves on the surface of deep water is investigated, when the perturbation of external pressure moves with near-resonant velocity. It is shown that there are three branches of bounded stationary solutions turning into asymptotic solutions of the linear problem with zero initial conditions. For the first time ice sheet destruction by turbulent fluctuations of atmosphere pressure in ice adjacent layer in wind conditions is studied.