• Title/Summary/Keyword: Turning ability

Search Result 126, Processing Time 0.023 seconds

A study on the maneuverabilities of the marine research vessel CHARMBADA (해양조사선 참바다호의 조종성능에 관한 연구)

  • An, Young-Su;Bae, Gwang-Min;Jang, Choong-Sik;Jung, Yun-Soo;Kang, Il-Kwon;Kim, Bo-Yeon
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.46 no.1
    • /
    • pp.56-69
    • /
    • 2010
  • This study was intended to determine the maneuverability of the vessel CHARMBADA. When the rudder angle was at $10^{\circ}$, $20^{\circ}$ and $30^{\circ}$, the maximum advance by slow, half and full ahead were varied in the range of 523.6-131.3m, 528.8-177.2m and 530.6-219.7m, respectively. The maximum transfer was 799.9-181.3m, 792.1-232.8m and 807.7-316.9m, respectively. The turning circle ability was better during starboard turning. When the rudder angle was $10^{\circ}$, $20^{\circ}$ and $30^{\circ}$, variation in the maximum advances was 392.0m, 245.0m and 153.0m. The maximum transfer was 528.0m, 339.0m and 218.0m, respectively based on the regression equations. As the rudder angle became bigger, the maximum advance or maximum transfer became smaller by the exponential function. The advance inertia took 127sec, 145sec, 181sec each until the vessel speed was 7.0konts, 12.0konts, 17.0konts. The static inertia took 245sec, 269sec, 300sec each until the vessel speed was under 2.0konts and the advance distance was 114.4m, 181.2m, 197.0m each. Accordingly, the static inertia was inclined to increase to scale according to the increase in vessel speed. For the CHARMBADA, the smaller the rudder angle was, the much bigger the turning circle became due to adhesion to the skeg, thereby lowering the vessel's turning ability.

Development of the Dynamic Model and Control Logic for the Rear Wheel Steering in 4WS Vehicle (후륜 조향 동력학 모델 및 제어 로직 개발)

  • 장진희;김상현;한창수
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.4 no.6
    • /
    • pp.39-51
    • /
    • 1996
  • In the turning maneuver of the vehicle, its motion is mainly dependent on the genuine steering characteristics in view of the directional stability for stable turning ability. The under steer vehicle has an ability to maintain its own directonal performance for unknown external disturbances to some extent. From a few years ago, in order to acquire the more enhanced handling performance, some types of four wheel steering vehicle were considered and constructed. And, various rear wheel control logics for external disturbances has not been suggested. For this reason, in this posed rear wheel control logic is based on the yaw rate feed back type and is slightly modified by an yaw rate tuning factor for more stable turning performance. And an external disturbance is defined as a motivation of the additional yaw rate in the center of gravity by an uncertain input. In this study, an external disturbance is applied to the vehicle as a form of the additional yawing moment. Finally, the proposed rear wheel control logic is tested on the multi-body analysis software(ADAMS). J-turn and double lane change test are performed for the validation of the control logic.

  • PDF

A Study on Kinematic Analysis of Trunk and Lower Extremities in Stance Phase of Walking according to Turning Direction (보행 방향 전환 시 입각기 하지 및 체간의 운동형상학적 분석)

  • Oh, Tae-Young
    • The Journal of Korean Physical Therapy
    • /
    • v.25 no.2
    • /
    • pp.88-95
    • /
    • 2013
  • Purpose: The purpose of this study was to conduct an analysis of kinematics of lower extremities and trunk in stance phase of walking according to turning direction. Methods: Ten university students (five male, five female) who were in their 20s (mean age was 20.6 years old) participated in this study. Participants did not have participants did not have any problem with skeletal muscular system. We used the "Qualisys motion capture system" for analysis of trunk and lower extremity movement in stance phase of walking according to turning direction. We collected data while subjects walked a distance of 10 m, and at the 6 m line, subjects were required to turn to the left side and the right leg was positioned in stance phase and the left leg was positioned in swing. For data analysis, the SPSS for Windows ver. 20.0 statistics program was used in performance of one way analysis of variance according to turning direction. Results: Significant difference of trunk and lower extremities was observed for turning direction according to walking cycle (p<0.05). Upper trunk movement showed a greater increase at three dimensions than lower trunk, and in heel off phase, pelvic movement showed a greater increase than lower trunk (p<0.05). In 45 degree and 90 degrees of turning direction, all movements of trunk and lower extremities were significantly different among three events of stance phase (p<0.05). Conclusion: We suggest that three-dimensional movement analysis of trunk and lower extremities during turning movement was very important in order to indicate increasing balance or walking ability for people with impaired movement or walking.

A Study on Angle of Heel in Turning using Ship Maneuverability lndices (선박 조종성 지수를 이용한 선회 중 횡경사에 관한 기초연구)

  • Kim, Hong-Beom;Yim, Jeong-Bin
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2019.11a
    • /
    • pp.269-269
    • /
    • 2019
  • The ships are turning for the purpose of collision avoidence and change of course. It is possible that ships have capsizing accident when improper loading of cargo and excessive use rudder angle in turning. It is difficult for navigation officers to recognize the danger of heeling during a turn, because the dynamic state of the ship changes in real time. Thus, in this study, ship's heeling angle was predicted during turning using the maneuverability indices estimated from the ship's autopilot. The maneuverability indices estimated through the Kalman filter of Autopilot is real-time predictable. The turning radius was obtained from the estimated Index of turining ability and calculations of the heeling angle were possible in turning. It is intended to be used as a basic data on the prevention of danger heeling angle during turning.

  • PDF

Design and Performance Analysis of a Variable Configuration Tracked Vehicle (가변 형상 무한 궤도 차량의 성능 해석 및 설계)

  • 김한호;곽윤근
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.1
    • /
    • pp.20-27
    • /
    • 2001
  • A variable configuration tracked vehicle(VCTV) is developed to reduce turning energy and improve climbing ability for stairs. This mechanism has four track T-type frames. By changing the driving direction, each track T-type frame rotates to minimize the contact area with ground. It also has better performance than other VCTV in energy consumption of turning. Futhermore this mechanism is more stable than other VCTV on the rough terrain. When climbing stairs, each track T-type frame rotates to obtain a front attack angle and keep stability on steep stairs. The design parameters of components of track T-type frames are optimized to enhance the performance of climbing stairs. Performance indices include a stable angle, a climbing ability, a height of the vertical obstacle. In case that the overall length of the mechanism is 0.2m, it is required that the radius of the wheels should be 5mm and the length track contacted with he ground should be 0.09m to climb higher and steeper stairs.

  • PDF

Result Analysis of Sea Trial Test for Offshore Fishing Boat Attached FRP Rudder (FRP 복합재료 방향타 장착 근해어선의 해상시운전시험 결과분석)

  • Park, Chung-Hwan;Jang, Ho-Yun;Park, Myung-Sik;Im, Nam-Kyun
    • Journal of Ocean Engineering and Technology
    • /
    • v.27 no.6
    • /
    • pp.112-118
    • /
    • 2013
  • This paper reports the results of a comparative study on rudder performance between the steel rudders that have been used in coastal angling fishing boats in the 20-GT class and the newly developed FRP composite material rudders. In order to compare the rudder performances of these two types, a sea trial test was carried out to investigate the speed performance, fuel consumption, and ship's turning ability. The results showed that the sea trial performance of the FRP composite rudder was better than that of the steel rudder type in terms of the sea speed, fuel consumption rate, and turning ability.

Evaluation of the maneuverability of a real ship with flap rudder (Flap rudder를 이용한 조종성능 평가)

  • AHN, Jang-Young;KIM, Kwang-il;KIM, Min-Son;LEE, Chang-Heon
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.56 no.2
    • /
    • pp.172-182
    • /
    • 2020
  • In order to offer specific information needed to assist in operation of a ship with same type rudder through evaluating the maneuverability of training ship A-Ra with flapped rudder, sea trials based full scale for turning test, zig-zag test with rudder angle 10° and 20°, and spiral test at service condition were carried out on starboard and port sides around Jeju Island according to the standards of maneuverability of IMO. As a result, the angular velocity of port turn was higher than that of starboard turn. Therefore, the size of turning circle was longer on the starboard side. In addition, variation of the transfer due to various factors was more stable than those of the others. In the Z-test results, the mean of 1st and 2nd overshoot angles were 9.8°, 6.3° and 15.3°, 9.2° respectively when the port and starboard was 10°; the 1st overshoot angle were 18°, 13.7° when using 20°. Her maneuverability index T' and K' can be easily determined by using a computer with the data obtained from Z-test where K' and T' are dimensionless constants representing turning ability and responsiveness to the helm, respectively. In the Z-test under flap rudder angle 10°, the obtained K' value covered the range of 2.37-2.87 and T' was 1.74-3.45. Under the flap rudder angle 20°, K' and T' value showed 1.43-1.63, 1.0-1.73, respectively. In the spiral test, the loop width was unstable at +0.3° and -0.5°-0.9° around the midship of flap rudder. As a result, course stability was comparatively good. From the sea trial results, training ship ARA met the present criterion in the standards of maneuverability of IMO.

Study on the Manoeuvring Characteristics of a Ship with Stern Bulb (선미벌브를 갖는 선박의 조종특성에 관한 연구)

  • Kyoung-Ho Sohn;Gyoung-Woo Lee
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.31 no.3
    • /
    • pp.65-79
    • /
    • 1994
  • In the present paper, An emphasis is laid upon effects of stern bulb on hydrodynamic property and manoeuvring performance. We carried out captive model tests in circulating water channel with two ship models of which the frame lines of aft bodies are different. such as normal stern form and stern form with bulb, but of which the other parts are exactly same. The tests conducted consist of hull resistance test, effective thrust measurement, oblique tow test, and measurements of factors related to rudder force. From the results of model tests, we discussed effects of stern bulb on hull forces and on hull-propeller-rudder interactions, comparing with normal stern form. Furthermore, we also discussed effects of stern bulb on course stability. turning ability. spiral characteristics and zig-zag manoeuvre by computer simulation. As a result, it is clarified that the adoption of stern bulb makes course stability the worse and turning ability the better. The difference of the hydrodynamic derivatives of naked hull between two ship forms cause the worse course stability of the ship with stern bulb. The differences of the effective inflow velocity to rudder and hull forces induced by steered rudder cause the better turning ability of the ship with stern bulb.

  • PDF

The maneuvering characteristics of the research vessel NARA equipped with the azimuth thruster system (Azimuth thruster 시스템을 장착한 나라호의 조종성)

  • KIM, Jung-Chang;KANG, Il-Kwon;LEE, Jun-Ho;HAM, Sang-Jun;PARK, Chi-Wan;KIM, Su-Hyeng
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.53 no.3
    • /
    • pp.276-285
    • /
    • 2017
  • The research vessel NARA equipped with an azimuth thruster system was built in 2015. There are few vessels with this propulsion system in Korea. This vessel has two modes such as the normal for maneuvering and the power for investigation, and the other two modes as one axis and two axes on the operating. This type of vessels does not seem to have a clear grasp of the maneuvering character in comparison with the vessel with a conventional propulsion system. So the authors carried out the sea test for the turning, the zigzag and the inclination, and the results are as follows. In turning test, the case of using the two axes mode is much better than the case of using the one axis mode for the elements of turning, such as advance, transfer, tactical diameter and final diameter, but turning hard over the rudder in full speed is very vulnerable to capsize in both modes. In zigzag test, the yaw quicking responsibility index, T is very large excessively, which means a bad counter maneuvering ability, so an operator has to keep in mind that in turning operation. If necessary to avoid collision at head on situation, it may be a more effective method to use the crash astern stop than the turning according to the conditions and circumstances for the shortest stopping distance is very short.

A Study on the Control of Ship Maneuvering by the Simulation of Anchor Dredging (닻 운용 시뮬레이션에 의한 선체운동 제어에 관한 연구)

  • 윤순동
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.8 no.2
    • /
    • pp.9-15
    • /
    • 2002
  • Ship operators use anchor dredging for the collision avoidance or safety of ship handling in a harbour or narrow channel. This paper clarifies the technique of the anchor dredging known as a common sense for. the seafarers A mathematical model at low speed range is established for the estimation of ship motion under the assumed environment, simulate the advance speed , and turning ability under the anchor dredging or not. The results shows good agreement with the conventional seamanship and their experiences as follows. Ahead speed used the anchor dredging is slower(speed reduction ratio:40%) than the normal ahead speed and the stopping distance is shorter (distance reduction ratio:40%)than the normal ahead distance without the anchor dredging.. Turning speed used anchor dredging is slower(speed reduction ratio:72%)than the normal ahead speed and the tactical diameter is shorter(distance reduction ratio:24%)than the diameter by the normal turning without the anchor dredging.

  • PDF