• 제목/요약/키워드: Turning Characteristics

검색결과 504건 처리시간 0.02초

SCM440의 선삭가공시 CBN공구와 CBN코팅공구의 절삭특성 비교 (Cutting Characteristics Comparison between CBN and Coated CBN Tools in Turning SCM440)

  • 방홍인;신형곤;오성훈;김태영
    • 한국기계기술학회지
    • /
    • 제13권3호
    • /
    • pp.31-37
    • /
    • 2011
  • The purpose of this study is to investigate cutting characteristics and wear behavior in SCM440 steel with different cutting tools, CBN(Cubic Boron Nitride) and coated CBN. During the test coated CBN tool especially with TiAlN showed better wear resistance behavior than orginal CBN tools. In the interrupted cutting condition, axial groove affected tool surface with impact force during the turning operation. For advantageous turning parameter in the interrupted process it is recommendable that lower speed. Also surface roughness showed better behavior in the coated CBN tool conditions than normal CBN conditions. Mainly this is caused by reduced friction between material and tool surface with coated layer.

선반에서 공정변수가 가공물의 동적 거동 변화에 미치는 영향에 관한 연구 (A Study on the Effects of Process Parameters on Dynamic Behavior Changes of Turning System)

  • 김기호;오재윤
    • 한국정밀공학회지
    • /
    • 제14권8호
    • /
    • pp.21-28
    • /
    • 1997
  • This paper presents the influence of the process parameters on the change in dynamic behavior of a lathe turning system. With variation of feed rate, depth of cut, direction of tool motion, cutting speed and tool location along the workpiece, the dynamic characteristics of stable cutting, chatter transition and fully developed chatter regions are demonstrated. The workpiece vibration during machining is continuously measured at different tool locations along the workpiece and quantitatively analyzed. Complex linear behavior due to change of process parameter values as well as fundamental wystem nonlinearity due to change of process configuration indicated by a tool path dependence of the locations of chatter onset and disappearance are described. Finally, the structural characteristics of the turning system which can have large and nonlinear effects on system behavior are presented.

  • PDF

다구찌 방법을 이용한 Inconel 718 소재의 선삭가공에서 표면거칠기 최적화 (Searching Optimal Cutting Condition for Surface Roughness In Turning Operation on Inconel 718 using Taguchi Method)

  • 차진훈;한상보
    • 한국생산제조학회지
    • /
    • 제19권2호
    • /
    • pp.295-300
    • /
    • 2010
  • Inconel 718 alloy, widely used as material of aircraft engine, has a good mechanical property in high temperature, strong anti-oxidation characteristics in oxidated current over $900^{\circ}C$, and also is not easily digested in the air containing sulfur, therefore, its usage as mechanical component is expanding rapidly. Even though Inconel alloy 718 is difficult to machine, it requires highly precise processing/machining to sustain its component quality of high accuracy. In this paper, general turning operation conditions arc tested to select the best cutting process condition by measuring surface roughness through implementing experiments with orthogonal array of cutting speed, feeding speed and cutting depth as processing parameters based on the Taguchi method. Optimal turning operation conditions are extracted from the proposed experimental models.

선삭가공시의 인코넬 718합금의 표면거칠기 최적 절삭조건 (Optimal Cutting Conditions of Surface Roughness for Inconel 718 Alloy in Turning Operation)

  • 박종민;최원식;권순홍;차진훈
    • 한국기계가공학회지
    • /
    • 제8권4호
    • /
    • pp.48-53
    • /
    • 2009
  • Inconel 718 alloy, widely used as material of aircraft engine, has a good mechanical property in high temperature, strong anti-oxidation characteristics in oxidated current over $900^{\circ}C$, and also is not easily digested in the air containing sulfur, therefore, its usage as mechanical component is expanding rapidly. Even though Inconel alloy 718 is difficult to machine, it requires highly precise processing/machining to sustain its component quality of high accuracy. In this paper, general turning operation conditions are tested to select the best cutting process condition by measuring surface roughness through implementing experiments with orthogonal array of cutting speed, feeding speed and cutting depth as processing parameters based on the Taguchi method. Optimal turning operation conditions are extracted from the proposed experimental models.

  • PDF

퍼지이론을 이용한 선삭의 절삭력제어 (Cutting Force Control of Turning Process Using Fuzzy Theory)

  • 노상현;정선환;김교형
    • 대한기계학회논문집
    • /
    • 제18권1호
    • /
    • pp.113-120
    • /
    • 1994
  • The dynamic characteristics of turning processes are complex, non-linear and time-varying. Consequently, the conventional techniques based on crisp mathematical model may not guarantee cutting force regulation. This paper presents a fuzzy controller which can regulate cutting force in turning process under varying cutting conditions. The fuzzy control rules are extablished from operator experience and expert knowledge about the process dynamics. Regulation which increases productivity and tool life is achieved by adjusting feedrate according to the variation of cutting conditions. The performance of the proposed controller is evaluated by cutting experiments in the converted conventional lathe. The results of experiments show that the proposed fuzzy controller has a good cutting force regulation capability in spite of the variation of cutting conditions.

다결정 다이아몬드 공구를 이용한 Al-Mg계 합금의 미소선삭가공특성에 관한 연구 (A Study on the Micro Turning Machinability of A1-Mg Alloy Using Polycrystalline Diamond Tool)

  • 황준;남궁석
    • 한국정밀공학회지
    • /
    • 제13권5호
    • /
    • pp.122-130
    • /
    • 1996
  • In this study, machinability of some aluminum-magnesium alloy are experimentally investigated using polycrystalline diamond tool with turning, and evaluated some independent cutting variables affected micrometal cutting characteristics as cutting force, specific cutting resistance, shear angles. To know the effect of cutting parameters of single point diamond machining, experiments were performed to measure cutting forces for high speed turning of aluminum alloy 6061-T6, SM45C and FC20 with poly- crystalline diamond and coated cemented carbide tool. Independent cutting variables were changed to a variety of cutting speed, feed rate, rake angles, material properties of workpiece and tool. Futhermore. Some useful informations are obtained in this study can guide micro metal cutting of aluminum alloy with diamond tool.

  • PDF

소형비행기 실속특성 향상 및 적합성검증 방안 연구 (Study on the stall characteristics improvement and compliance verification of the G.A. airplane)

  • 최주원;김진수
    • 항공우주시스템공학회지
    • /
    • 제8권3호
    • /
    • pp.47-54
    • /
    • 2014
  • This is a research on the method of how to improve stall characteristics for the small general aviation airplanes to meet the FAR part 23 requirements. This research is based on the experience of certification flight tests of KC-100 airplane for Korea type certification. KAS/FAR Part 23.201/203 are the stall characteristics requirements. 23.201 requires to show the stable stalling tendency of the wings level stall and 23.203 requires to show the stable stalling tendency of stall characteristics during turning flight. In this paper, the stall characteristics requirements, improvement methods and flight test experience of KC-100 airplane for type certification.

극저온 냉각 및 나노유체 극미량 윤활을 적용한 티타늄 합금의 선반 절삭가공 특성에 관한 연구 (Experimental Characterization of Turning Process of Titanium Alloy Using Cryogenic Cooling and Nanofluid Minimum Quantity Lubrication)

  • 김진우;김정섭;이상원
    • 한국정밀공학회지
    • /
    • 제34권3호
    • /
    • pp.185-189
    • /
    • 2017
  • Recently, titanium alloys have been widely used in aerospace, biomedical engineering, and military industries due to their high strength to weight ratio and corrosion resistance. However, it is well known that titanium alloys are difficult-to-cut materials because of a poor machinability characteristic caused by low thermal conductivity, chemical reactivity with all tool materials at high temperature, and high hardness. To improve the machinability of titanium alloys, cryogenic cooling with LN2 (Liquid Nitrogen) and nanofluid MQL (Minimum Quantity Lubrication) technologies have been studied while turning a Ti-6Al-4V alloy. For the analysis of turning process characteristics, the cutting force, the coefficient of friction, and the surface roughness are measured and analyzed according to varying lubrication and cooling conditions. The experimental results show that combined cryogenic cooling and nanofluid MQL significantly reduces the cutting forces, coefficients of friction and surface roughness when compared to wet condition during the turning process of Ti-6Al-4V.

회전하는 냉각유로의 곡관부에 부착된 가이드 베인의 형상 최적설계 (Shape Optimization of a Rotating Two-Pass Duct with a Guide Vane in the Turning Region)

  • 문미애;김광용
    • 한국유체기계학회 논문집
    • /
    • 제14권1호
    • /
    • pp.66-76
    • /
    • 2011
  • The heat transfer and pressure loss characteristics of a rotating two-pass channel with a guide vane in the turning region have been studied using three-dimensional Reynolds-averaged Navier-Stokes (RANS) analysis, and the shape of the guide vane has been optimized using surrogate modeling optimization technique. For the optimization, thickness, location and angle of the guide vanes have been selected as design variables. The objective function has been defined as a linear combination of the heat transfer and the friction loss related terms with a weighting factor. Latin hypercube sampling has been applied to determine the design points as design of experiments. A weighted-average surrogate model, PBA has been used as the surrogate model. The guide vane in the turning region does not influence the heat transfer in the first passage upstream of the turning region, but enhances largely the heat transfer in the turning region and the second passage. In an example of the optimization, the objective function has been increased by 13.6%.

Co-Cr-Mo 합금의 선삭 가공 특성에 관한 연구 (A Study on the Machining Characteristics of Co-Cr-Mo Alloy in Turning Process)

  • 홍광표;조명우;최인준
    • Design & Manufacturing
    • /
    • 제11권1호
    • /
    • pp.50-54
    • /
    • 2017
  • In this study, researches were conducted as follows. First, as the basic experiment, the cutting speed, feedrate, and the depth of cut were set as the process parameters, and by setting the surface roughness as the factor of measurement for each of the combinations, and the analysis about cutting tendency of the material was conducted by proceeding the turning process of Co-Cr-Mo alloy. Second, by setting the feature of the surface roughness according to the 'turning processing condition' that was confirmed in the previous experiment, and by applying the Taguchi Method, the conditions that influence the features of the surface roughness according to the 'turning processing condition' of Co-Cr-Mo was analyzed, and also by measuring the surface roughness according to each of the 'cutting conditions', the optimal processing condition was generated. As the result of analysis, it was possible to understand that the factor that mostly affects the surface roughness was the cutting speed, followed by the dept of cutting and transfer speed, and as for the optimal processing condition, it was possible to find that the cutting speed was 5,000rpm, and the depth of cut was 0.1mm, and the feedrate was 0.003mm/rev, and the value of the surface roughness at this point is $0.197{\mu}m$.