• Title/Summary/Keyword: Turf growth and quality

Search Result 71, Processing Time 0.023 seconds

Effect of Fertilizer Component on Turfgrass Growth and Quality of Golf Putting Greens under Traffic Stress (답압하에서 질소, 인산, 칼륨 변화가 골프코스 그린 잔디의 생육과 품질에 미치는 영향)

  • Lee, Sung-Woo;Lee, Jae-Pil;Kim, Doo-Hwan
    • Asian Journal of Turfgrass Science
    • /
    • v.21 no.2
    • /
    • pp.137-146
    • /
    • 2007
  • Traffic causes more and more stress and injury to grasses on golf course green in Korea due to the increased playing. This study compared the effect of fertilizer component (Nitrate, Phosphate, Potassium) on turfgrass growth and quality golf course green under traffic stress during early winter. Experiment was conducted by using different fertilizer components for 2 months(Oct. 1 to Nov. 30, 2005). Turfgrass leaf color, leaf texture, density and traffic tolerance were evaluated visually, and the root length(cm) and tiller density(tiller/$cm^2$) were measured. Creeping bentgrass(Agrostis palustris cv. 'Seaside II') fromthe nursery of Incheon Grand Golf Club was used. Results of this study are as followings: 1). Turfgrass color was the best in A6(20-15-10) and A5(15-15-10) treatments in the N study. Leaf texture was not different among treatments. Turf quality and traffic tolerance were the highest In A5 and A6. Root length was the longest(15.8cm) in A6 (20-15-10). Root length increased with nitrogen levels. 2). Turf color of A9(5-7.5-5) and A10(15-22.5-15) was darkest in the comparison of P study. Leaf texture was the best in A4(10-15-10) and A9. Turf quality was the best in A10. A7(10-0-10). 3). In general, to recover turfgrass damage on the putting greens during low temperature period, fertilizer amount need to be increased; and nitrogen is better than phosphate and potassium for that purpose.

Evaluation of Various Slow-release Nitrogen Sources for Growth and Establishment of Poa pratensis on Sand-based Systems (모래지반에서 켄터키블루그래스의 성장과 조성에 미치는 질소의 유형별 효과)

  • Lee, Sang-Kook;Minner, David D.;Christians, Nick E.
    • Asian Journal of Turfgrass Science
    • /
    • v.24 no.2
    • /
    • pp.145-148
    • /
    • 2010
  • Nitrogen (N) is one of the most important nutrients among 17 essential nutrients for maintaining turfgrass color and quality. The slow release fertilizers were initially developed to provide a more consistent release of nitrogen over a longer period and are often used to decrease leaching potential from sandy soils. The goal of this study is to determine if various slow release N sources affect the rate at which turfgrass establishes. Six nitrogen sources were evaluated; Nitroform (38-0-0), Nutralene (40-0-0), Organiform (30-0-0), Sulfur coated urea (SCU, 37-0-0), urea (46-0- 0), and Milorganite (6-0-0). The root zone media was seeded and sodded with 'Limousine' Kentucky bluegrass (Poa pratensis L.). Sodded pots produced 182 to 518 g more clipping dry weight than seeded pots. Among seeded pots, Milorganite produced greater amount of root dry weight than any other N sources. Because the period of turfgrass growth is different between sodded and seeded plots, there were differences on clipping yield and root growth. Overall, high N rate had turf color greater than acceptable color of 6 among seeded pots throughout the study. However, low N rate didn't produce acceptable turf color throughout the study. Based on the result of this tudy, ilorganite would be ecommended for new establishment of Kentucky bluegrass an urea with less clipping yield which can lead to reduce abor.

Growth of Creeping Bentgrass by Application of Compound Fertilizer Containing Microbes (미생물 함유 복합비료 시비에 따른 크리핑 벤트그래스의 생육)

  • Kim, Young-Sun;Lee, Chang-Eun;Ham, Soun-Kyu;Lee, Geung-Joo
    • Weed & Turfgrass Science
    • /
    • v.5 no.1
    • /
    • pp.42-50
    • /
    • 2016
  • Superintendents have been used microbial fertilizers to improve turfgrass growth and quality and to decrease turfgrass diseases in golf course. This study was conducted to investigate the effects of compound fertilizer containing microbe (MF) on the growth and quality of creeping bentgrass with turf color index (TCI), chlorophyll index (ChI), root length, turfgrass density, clipping yield and nutrient content. Treatments were designed as follows; non-fertilizer (NF), compound fertilizer (21-17-17; CF) as control, compound fertilizer (14-6-17) containing microbe. In pot experiment, TCI and ChI of creeping bentgrass in MF plot were similar to those in CF. But clipping dry weight of MF plot increased by 39.1% compared to that of CF plot. At field experiment applied with MF treatment, TCI, ChI, root length, and nutrient content and uptake of creeping bentgrass were similar to those with CF treatment, but turfgrass density with MF higher about 7.9-15.8% than with CF. These results indicated that the application of MF improved growth and quality of creeping bentgrass by enhancing clipping yield and shoot number.

Effects of Growth Retardants on the Growth of Creeping Bentgrass (식물생장억제제가 Creeping Bentgrass의 생육에 미치는 영향)

  • 김석준;손기철;김두환;이재필
    • Asian Journal of Turfgrass Science
    • /
    • v.12 no.3
    • /
    • pp.173-182
    • /
    • 1998
  • This study was conducted to evaluate the effect of plant growth inhibitors on "Penncross" creeping bentgrass in the green of golf course for increasing the summer quality. Chlormequat chloride (C) 250$\times$, 500$\times$, 1000$\times$, daminozide (D) 50$\times$, 100$\times$, 200$\times$, paclobutralzol (P) 1000$\times$, 2000$\times$, 4000$\times$, trinexpac-ethyl (T) 1000$\times$, 2000$\times$, 4000$\times$, uniconazole (U) 25$\times$, 50$\times$, 100$\times$ with three concentrations, respectively, were applied to creeping bentgrass. The leaf length, leaf width, and internode length of stolon were inhibited by all plant growth retardants applied as compared to that of control in which D-50, T-2000, and trinexpac-ethyl were the most effective among treatments on the inhibition of leaf length and internode length of stolen, respectively. Leaf thickness increased more in the treatments of C-250, D-50. T-2000 and T-4000 than any other treatments. On the other hand, shoot density which was represented by number of leaves per unit area was found to be the highest in P-2000 and P-4000 treatment. In this case, all plant growth retardants with no significant differences showed increase of 15-20% in density as compared to control. Total dry weight increment was higher in P-2000 and P-4000 while leaf dry weight increment was higher in T-4000. and U-25 and 50 than other treatments. According to the visual evaluation for the purpose of turf quality measurement, it was found that paclo-butralzol, trinexpac-ethyl and uniconazole were not suitable for green maintenance and extension because of making leaves to yellow. In conclusion, it was postulated that C-250, D-50, and T-4000 had possibility to use practically in the green area of golf course.lf course.

  • PDF

Analyses of the Environmental Characteristics of Ponds in Golf Courses for Ecological Management (골프장 연못의 생태적 관리를 위한 환경특성 분석)

  • Ahn Deug-Soo;Kim Chang-Hwan
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.33 no.6 s.113
    • /
    • pp.51-77
    • /
    • 2006
  • Pond management is a critical part of overall golf course management, both during growth and maintenance modes of turf care. This study investigated 48 ponds in nine 18- or 27-hole golf courses to analyze the environmental characteristics of ponds. The research process had three phases: (1) inventory and analysis of grading plans and drainage plans, (2) field verification and interviews with greenskeepers, and (3) analyses of water quality and statistics. All data were collected from May to August in 2004. The results of this study can be summarized as follows: 1. It is desirable to site a golf course in a small watershed with high watershed eccentricity to control storm water runoff efficiently and to minimize soil erosion during construction. 2. The siting and size of a pond should be determined through a land-use analysis of the watershed for the purpose of ecological management. The bigger the forest-to-golf course ratio, the better the water quality will be. 3. The size and capacity of each individual ponds varied and there were many somewhat longish rather than round ponds. 4. There were many differences among golf courses in naturalness of the ponds, and the correlation between naturalness and area of aquatic plants was very high. 5. Analyses of pond water quality indicated that the degrees of Dissolved Oxygen, Chemical Oxygen Demanded and Suspended Solids were relatively low values but Total Phosphorus and Total Nitrogen were too high. Therefore a systematic approach is needed to solve e problem. Pesticide residues were not detected in all ponds. 6. Water depth and area of hydrophyte should be considered when designing an ecological pond. 7. All ponds used storm water as a main source of water supply and added underground water. Aquatic plants and physical methods such as water aeration and spray fountains were the main choices for maintaining a healthy aquatic environment.

Comparison of Thatch Accumulation in Warm-Season and Cool-Season Turfgrasses under USGA and Mono-layer Soil Systems (USGA 지반 및 약식지반에서 난지형과 한지형 잔디의 대취축적 비교)

  • Kim, Kyoung-Nam;Kim, Byoung-Jun
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.38 no.1
    • /
    • pp.129-136
    • /
    • 2010
  • This study was initiated to investigate thatch accumulation in several turfgrasses grown under two soil systems. The 45 centimeter deep USGA system was constructed with rootzone, intermediate and drainage layers. The mono-layer system, however, was made with only a 30cm rootzone layer. Turfgrasses used in the study were comprised of 3 varieties from Korean lawngrass of Warm-Season Grass(WSG) and 3 blends and 3 mixtures from Cool-Season Grass(CSG). A total of 9 turfgrass treatments were replicated three times in RCBD in both systems. Cultural practices for the research plot followed a typical maintenance program for highly managed turf. Treatment differences for thatch accumulation were observed among the turfgrasses in both soil systems. Thatch under the USGA system was 9% greater than under the mono-layer system due to its more favorable conditions for turf growth. Higher thatch depth was found with Korean lawngrass, 34~87% in the USGA system and 16~75% in the mono-layer system when compared with CSG. Among WSG, the Joongji variety was the highest in thatch layer under both the USGA and mono-layer systems. Kentucky bluegrass(KB) was the greatest among CSG, since it is a rhizomatous-type in growth habit, resulting in faster production of organic matter over bunch-type of tall fescue and perennial ryegrass. Proper depth in the thatch layer was known to be beneficial by enhancing the resiliency and wear tolerance of the turf in athletic fields. Thus, KB was considered to be a very excellent turfgrass in terms of turf quality, environmental performance, physical properties and soccer player safety. However, disadvantages such as poor water-holding properties, more inclined to injury from environmental stresses and severe diseases and insect injury were also expected where thatch was excessively accumulated. Therefore, these results demonstrate that more frequent measures for controlling thatch such as vertical mowing, topdressing or coring should be employed for soccer fields with Korean lawngrass and KB over other turfgrasses.

Green management of using with Trinexapac-ethyl (식물생장조절제 Trinexapac-ethyl을 이용한 그린관리)

  • Hong, Beom-Seok;Tae, Hyun-Sook;Jeon, Jae-Chan;Cho, Yong-Sup;Oh, Sang-Hun
    • Asian Journal of Turfgrass Science
    • /
    • v.23 no.2
    • /
    • pp.287-294
    • /
    • 2009
  • This study conducted to evaluate the growth characteristics of creeping bentgrass in summer after application of the plant growth regulator, Trinecapac-ethyl, and these data may provide basic information to golf course turf maintenance. The results showed that the shoot density of creeping bentgrass was increased an average density of 1.7 $ea/cm^2$ with the trinexapac-ethyl application, especially about 2 $ea/cm^2$ during the growth retarded period of June and July. The root length increased also in June and August. The visual quality was improved significantly with trinexapac-ethyl treatment all the experimental periods, moreover, the effect was significant by reducing a summer decline stress of creeping bentgrass during the warm and humid period of summer. The green speed was significantly improved by this growth regulator treatment and those effect was prominent during stressed season of late June to mid July. Overall of the result, we found that shoot density, visual quality and green speed of bentgrass green were improved by trinexapac-ethyl treated from early growing season of spring and these effects were continued during summer. It should be very beneficial to manage the bentgrass green in stressed season. In future, the possibility and efficiency of mixture with fungicides and/or fertilizers might be needed. The spring green-up test with trinexapac-ethyl will be followed in next spring.

Blue-green algae as a Potential agent Causing Turf Leaf Disease (잔디 엽병을 유발하는 잠재인자로서의 남조류(Blue-Green algae)에 대한 관찰보고)

  • Park, Dae-Sup;Lee, Hyung-Seok;Hong, Beom-Seok;Choi, Byoung-Man;Cheon, Jae-Chan
    • Asian Journal of Turfgrass Science
    • /
    • v.22 no.2
    • /
    • pp.161-170
    • /
    • 2008
  • Recently irregular dark-colored patches were found on the Kentucky teeing ground in a golf course in Gyunggi providence. Interestingly, blue-green algae from the leaf tissue sample containing black spot-stained symptoms were largely observed through microscopic study. In general, algae present on the upper soil surface or in the upper layer of root zone form dark brown layers of scum or crust, which invoked harmful effects to turf growth such as poor drainage, inhibition of new root development. In this observation, unlike the algae were sometime found in senescing leaves on contacted soil in July and August, the blue-green algae were detected within black spot-stained Kentucky bluegrass leaf tissues including leaf blade, ligule, auriclea as well as leaf sheath. The blue-green algae were also detected on the leaf and stem tissue adjacent to the symptomatic leaf tissues. Two species of blue-green algae, Phomidium and Oscillatoria, were greatly observed. Oscillatoria species was more commonly notified in all samples. In addition, the two species were found on a putting green showing yellow spot disease at another golf course in Gyunggi providence. The data from chemical control assay revealed that chemicals such as propiconazole, iprodione, and azoxystrobin decreased blue-green algae population and leaf spots, which finally resulted in enhanced leaf quality. All taken together, we strongly suggested that the disease-like phenomenon by blue-green algae might be very closely mediated with infection/translocation process in relation with turfgrass. It indicates that blue-green algae in turf management may play an adverse role as a secondary barrier as well as a pathogenic agent. This report may be helpful for superintendents to recognize and understand the fact that algae control should be provided more cautiously and seriously than we did previously in upcoming golf course management.

Effect of Undersoil Heating on Growth and Mineral Contents of Turfgrasses in Simulated Athletic Field During Winter Season (겨울철 지하부의 가온처리가 경기장 잔디의 생육 및 무기성분 함량에 미치는 영향)

  • 구자형;이혜정
    • Asian Journal of Turfgrass Science
    • /
    • v.16 no.2
    • /
    • pp.65-73
    • /
    • 2002
  • Studies were conducted to determine the effect of undersoil heating on growth and quality of turfgrasses including Kentucky bluegrass (Poa pratensis L.‘Nuglade’), perennial ryegrass (Lolium perenne L.‘Accent’), tall fescue (Festuca arundinacea Schreb.‘Pixie’), and Korean lawngrass (Zoysia japonica Steud.) in simulated athletic field during winter season in Korea. Mineral contents in clippings of turfgrasses grown at different soil mixtures and temperatures were also analyzed. Undersoil heating (approximately 20$\pm$2$^{\circ}C$) was effective in protecting turfgrasses except Korean lawngrass from freezing injury and discoloration of shoots due to extremely cold temperatures during midwinter. Among turfgrasses grown at undersoil heating zone, tall fescue and perennial ryegrass showed the highest clipping weights and chlorophyll contents, respectively. However, anthocyanin contents of shoots were higher in Kentucky bluegrass. There was little or no difference in clipping weights, chlorophyll contents, anthocyanin contents and greenness of shoots between turfgrasses grown at two soil mixtures composed of 80% sand+10% peat moss+10% soil (v/v/v) and 80% sand+20% pea moss (v/v). Contents of mineral K, Ca and Mg in clippings of cool-season turfgrasses were comparatively higher in a soil mixture composed of 80% sand+10% peat moss+10% soil, but little difference in contents of N and P was observed between two soil treatments. Results indicated that undersoil heating can improve quality of turf surface by thawing soil, melting snow, and maintaining shoot growth and greenness of turfgrasses in sports field during winter season.

Improvement of Physicochemical Properties and Turfgrass Growth by Root Zone Mixture of Soil Amendment 'Profile' (토양개량제 '프로파일'의 혼합에 따른 토양의 물리화학성 및 한지형 잔디의 생육 개선)

  • Kim, Young-Sun;Lim, Hye-Jung;Ham, Soun-Kyu;Lee, Geung-Joo
    • Weed & Turfgrass Science
    • /
    • v.6 no.3
    • /
    • pp.262-271
    • /
    • 2017
  • This study was conducted to evaluate incorporation ratio of soil amendment 'Profile' to improve soil physicochemical properties and turfgrass growth. The soil amendment was added 0 (sand only), 3, 5, 7, and 10% to USGA Green-spec green sand soil. As incorporated with more 'Profile' amendment, soil electrical conductivity (EC), cation exchangeable capacity (CEC), capillary porosity and total porosity of root zone were increased than those of control, while bulk density and hydraulic conductivity decreased. Turfgrass index and clipping yield of creeping bentgrass grown in sand soil incorporated with 7% 'Profile' were improved than those of control. Correlation coefficient of turf color index and incorporation ratio of the soil amendment 'Profile' was found to show significantly positive correlation. These results indicated that application of the soil amendment 'Profile' to sand soil in golf course green improved turfgrass growth and quality by increasing CEC and porosity of root zone.