• Title/Summary/Keyword: Turbulent flow noise

Search Result 157, Processing Time 0.021 seconds

The Effect of Scaling of Owl's Flight Feather on Aerodynamic Noise at Inter-coach Space of High Speed Trains based on Biomimetic Analogy

  • Han, Jae-Hyun;Kim, Tae-Min;Kim, Jung-Soo
    • International Journal of Railway
    • /
    • v.4 no.4
    • /
    • pp.109-115
    • /
    • 2011
  • An analysis and design method for reducing aerodynamic noise in high-speed trains based on biomimetics of noiseless flight of owl is proposed. Five factors related to the morphology of the flight feather have been selected, and the candidate optimal shape of the flight feather is determined. The turbulent flow field analysis demonstrates that the optimal shape leads to diminished vortex formation by causing separation of the flow as well as allowing the fluid to climb up along the surface of the flight feather. To determine the effect of scaling of the owl's flight feather on the noise reduction, a two-fold and a four-fold scaled up model of the feather are constructed, and the numerical simulations are carried out to obtain the aerodynamic noise levels for each scale. Original model is found to reduce the noise level by 10 dBA, while two-fold increase in length dimensions reduces the noise by 12 dBA. Validation of numerical solution using wind tunnel experimental measurements is presented as well.

  • PDF

Reduction of Aerodynamic Noise for a High-Speed Slim-Type Optical Disk Drive by Applying the Principle of Resonator (공명기를 이용한 고배속 슬림형 드라이브의 유동기인 소음저감에 관한 연구)

  • Yang, Tae-Man;Choi, Moon-Ho;Rhim, Yoon-Chul;Lee, In-Hwan;Lee, Han-Beak;Cha, Ik-Joo
    • Transactions of the Society of Information Storage Systems
    • /
    • v.3 no.4
    • /
    • pp.196-201
    • /
    • 2007
  • As the demand for the lap-top computer has been increased, most users ask quiet environment to work comfortably. Therefore, noise problems of an ODD are of great interest. For the high speed ODD, the flow induced noise is caused by the turbulent flow[1], which is known to be a major source of overall noise of a slim type ODD. In this study, we introduce a new attempt to reduce the noise level using the concept of Helmholtz resonator[2].The experimental analysis is carried out for several cases at different resonance frequencies and different hole patterns. The results show reductions in the noise level from the acoustic noise absorption point of view.

  • PDF

Rotordynamic and Leakage Analysis for Eccentric Annular Seal (편심된 실의 누설량 및 동특성계수 해석)

  • 하태웅;이용복;김창호
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.528-534
    • /
    • 2001
  • Basic equations and its solution procedure are derived for the analysis of an annular pump seal in which the rotor has a large static displacement from the centered position. The Bulk-flow is assumed for a control volume set in the seal clearance and the flow is assumed to be completely turbulent in axial and circumferential direction. Moody's wall-friction-factor formula is used for the calculation of wall shear stresses in the control volume. For the reaction force developed by the seal, linearized zeroth-order and first-order perturbation equations are developed for small motion about an eccentric position. Flow variables are expanded by using Fourier series for the solution procedure. Integration of the resultant first-order pressure distribution along and around the seal defines the 12 elements of rotordynamic coefficients of the eccentric annular pump seal. The results of leakage and rotordynamic coefficients are presented and compared with the Marquette's experimental results and the San Andres' theoretical analysis.

  • PDF

Hypersonic Panel Flutter Analysis Using Coupled CFD-CSD Method

  • Tran, Thanh Toan;Kim, Dong-Huyn;Oh, Il-Kwon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2011.10a
    • /
    • pp.171-177
    • /
    • 2011
  • In this paper, a square simply supported panel flutter have been considered at high supersonic flow by using coupled fluid-structure (FSI) analysis that based on time domain method. The Reynolds-Average Navier Stokes (RANS) equation with Spalart-Allmaras turbulent model were applied for unsteady flow problems of panel flutter. A fully implicit time marching schemed based on the Newmark direct integration method is used for calculating the coupled aeroelastic governing equations of it. In addition, the SOL 145 solver of MSC.NASTRAN was used to investigate flutter velocity based on PK-method of Piston theory. Our numerical results indicated that there is a good agreement result between Piston Theory in MSC.NASTRAN and coupled fluid-structure analysis.

  • PDF

Trailing Edge Noise Modification in a Blade Cascade (익렬 날개 후단소음의 저감)

  • Son, J.-M.;Kim, H.-J.;Lee, S.;Cho, S.-M.
    • 유체기계공업학회:학술대회논문집
    • /
    • 2002.12a
    • /
    • pp.116-122
    • /
    • 2002
  • It is addressed that the turbulent broadband sound power from a sirocco fan can be modeled by the trailing edge noise. The trailing edge noise is usually influenced by inflow turbulenca separation, and boundary layer thickness on the blade. The design parameters such as solidity (c/s) and stagger angle are specified to predict performance and noise level because the separation and slip velocity are strongly affected by them along with the flow coefficient. This paper reports the effects of the stagger angle upon the trailing edge noise for various trailing edge shapes. It is believed that the serrated trailing edge provides break-up mechanism for organized convecting vortices, thereby reduce the overall noise level for every case of stagger angle.

  • PDF

Trailing Edge Noise Modification in a Blade Cascade (익렬 날개 후단소음의 저감)

  • Son, J.M.;Kim, H.J.;Lee, S.B.;Cho, S.M.
    • The KSFM Journal of Fluid Machinery
    • /
    • v.6 no.3 s.20
    • /
    • pp.7-14
    • /
    • 2003
  • It is addressed that the turbulent broadband sound power from a sirocco fan can be modeled by the trailing edge noise. The trailing edge noise is usually influenced by inflow turbulence, separation, and boundary layer thickness on the blade. The design parameters such as solidity (c/s) and stagger angle are specified to predict performance and noise level because the separation and slip velocity are strongly affected by them along with the flow coefficient. This paper reports the effects of the stagger angle upon the trailing edge noise for various trailing edge shapes. It is believed that the serrated trailing edge provides break-up mechanism for organized convecting vortices, thereby reduce the overall noise level for every case of stagger angle.

Analysis of Trail-Edge Noise from Sirocco Fans (시로코 홴 날개후단 소음예측)

  • Kim, Kyoung-Ho;Lee, Seung-Bae;Kim, Ji-Sung;Kwon, Yang-Hoon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.396-401
    • /
    • 2000
  • It is addressed that the turbulent broadband sound power from a sirocco fan can be modeled by the trailing edge noise. The trailing edge noise is usually influenced by inflow turbulence, separation, and boundary layer on the blade. The design parameters such as solidity(c/s) and stagger angle are specified to predict performance and noise level because the separation and slip velocity are strongly affected by them along with the flow coefficient. This paper reports the effects of the solidity and the stagger angle upon the trailing edge noise from the circular arc-shaped blade of sirocco fan.

  • PDF

The aero-acoustic noise reduction based on biomimetics : A case study (생체모방공학을 이용한 공력 소음 저감 기초 연구)

  • Han, Jae-H.;Kim, Tae-M.;Kim, Jung-S.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2011.04a
    • /
    • pp.144-151
    • /
    • 2011
  • Recent years have witnessed speed up of moving vehicles such as high-speed of trains. Increase in speed entails concomitant increase in turbulent air flow which contributes toward aerodynamic noise. The proposed method for aerodynamic noise reduction is based on a biomimetic design of owl feather. The five morphological parameters of the owl feather is extracted from close observation, and simulation cases are constructed by applying design of experiments methodology. Swirling strength for each case is obtained through steady-state CFD analysis, and key morphological parameters that affect the turbulence are identified. Large eddy simulations (LES) are then performed on selected cases to predict the air turbulence. Different cases show varying vorticity distribution levels which is expected to lead to varying aerodynamic noise levels.

  • PDF

A Study of The Tilt-up Sunroof Wind Noise (자동차 선루프 틸트업 바람소리 연구)

  • Lee, Myunghan;Cho, Munhwan;Ih, Kangduck;Choi, Euisung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2013.04a
    • /
    • pp.788-792
    • /
    • 2013
  • There are three significant noises from the sunroof while driving. Among them, sunroof tilt-up noise has mainly high-frequency characteristics in the side and rear openings of sunroof. Because of complex structures to operate sunroof, significant flow disturbance makes strong turbulent noise. In this study, sunroof tilt-up noise was predicted by using numerical simulation code and the results were compared with experimental data.

  • PDF

NUMERICAL ANALYSIS OF THREE DIMENSIONAL SUPERSONIC CAVITY FLOW FOR THE VARIATION OF CAVITY SPANWISE RATIO (공동의 폭 변화에 따른 3차원 초음속 공동 유동연구)

  • Woo, C.H.;Kim, J.S.
    • Journal of computational fluids engineering
    • /
    • v.11 no.4 s.35
    • /
    • pp.62-66
    • /
    • 2006
  • High-speed flight vehicle have various cavities. The supersonic cavity flow is complicated due to vortices, flow separation, reattachment, shock waves and expansion waves. The general cavity flow phenomena includes the formation and dissipation of vortices, which induce oscillation and noise. The oscillation and noise greatly affect flow control, chemical reaction, and heat transfer processes. The supersonic cavity flow with high Reynolds number is characterized by the pressure oscillation due to turbulent shear layer, cavity geometry, and resonance phenomenon based on external flow conditions. The resonance phenomena can damage the structures around the cavity and negatively affect aerodynamic performance and stability. In the present study, we performed numerical analysis of cavities by applying the unsteady, compressible three dimensional Reynolds-Averaged Navier-Stokes(RANS) equations with the ${\kappa}-{\omega}$ turbulence model. The cavity model used for numerical calculation had a depth(D) of 15mm cavity aspect ratio (L/D) of 3, width to spanwise ratio(W/D) of 1.0 to 5.0. Based on the PSD(Power Spectral Density) and CSD(Cross Spectral Density) analysis of the pressure variation, the dominant frequency was analyzed and compared with the results of Rossiter's Eq.