• 제목/요약/키워드: Turbulent computational analysis

검색결과 331건 처리시간 0.022초

엇갈리게 기울어진 충돌제트들에 의한 오목면 상의 열전달 성능해석 (ANALYSIS OF HEAT TRANSFER OF INCLINED IMPINGING JETS ON A CONCAVE SURFACE)

  • 허만웅;이기돈;김광용
    • 한국전산유체공학회지
    • /
    • 제16권2호
    • /
    • pp.11-16
    • /
    • 2011
  • Numerical analyses have been carried out to analyze the three-dimensional turbulent heat transfer by impingement jet on a concave surface with variation of geometric configurations. Three-dimensional Reynolds averaged Navier-stokes equations have been calculated using the shear stress transport turbulent model. The numerical results for heat transfer rate were validated in comparison with the experimental data. The distance between jet nozzles and angle of inclined jet nozzle were selected as the geometric variables. Area-averaged Nusselt numbers on concave surface are evaluated to find the characteristics of heat transfer with the two geometric variables. The heat transfer increases as the distance between jet nozzles increases, and the inclined impinging jets show much better heat transfer performance than the vertical impinging jet.

Bump가 있는 초음속 흡입구 유동장의 수치적 연구 (THE NUMERICAL STUDY ON THE SUPERSONIC INLET FLOW FIELD WITH A BUMP)

  • 김상덕;송동주
    • 한국전산유체공학회지
    • /
    • 제10권3호
    • /
    • pp.19-26
    • /
    • 2005
  • The purpose of this paper is the study on the characteristics of an inlet system with shock/boundary layer interactions by using various types of bumps which are substituted for the conventional bleeding system in supersonic inlet. in this study a comprehensive numerical analysis has been performed to understand the three-dimensional flow field including shock/boundary layer interaction and growth of turbulent boundary layer that might occur around a three-dimensional bump in a supersonic inlet. The characteristics of boundary layer seen in the current numerical simulations indicate the potential capability of a three-dimensional bump to control shock/boundary layer interaction in supersonic inlets.

정수장내 수류에너지를 이용한 액체약품의 효율적인 혼화를 위한 수리해석 (Numerical Study on effective Mixing Chemical Liquid using Hydraulic Energy in a Water Treatment Plant)

  • 송길섭;오석영;박영빈
    • 한국전산유체공학회지
    • /
    • 제7권2호
    • /
    • pp.1-7
    • /
    • 2002
  • The present study is developed device that effectively mixes raw water and chemicals by using the residual head of fluid in the front pipe of flocculation basin, and performed non-dimensional analysis and presented design standard to apply to water plants that have different equipment capacity. The variables for design are a proper ratio between an outer diameter of deflector and a diameter of pipe, a distance between deflector and orifice and a determination of orifice diameter for an optimal mixing. Numerical study has analyzed flow field on a basis of turbulent intensity in an orifice downstream. As Reynolds number of In-Line Orifice was increased from identical design variable, the turbulent intensity of pipe center was no changed almost.

직사각형 공동 내부 자연연대류 문제에 대한 k-epsilon-vv-f 난류모델의 평가 (Evaluation of the K-Epsilon-VV-F Turbulence Model for Natural Convection in a Rectangular Cavity)

  • 최석기;김성오;김의광;최훈기
    • 한국전산유체공학회지
    • /
    • 제7권4호
    • /
    • pp.8-18
    • /
    • 2002
  • The primary objective of the present study is evaluation of the k-ε-vv-f turbulence model for prediction of natural convection in a rectangular cavity. As a comparative study, the two-layer k-ε model is also considered. Both models, with and without algebraic heat flux model, are applied to the analysis of natural convection in a rectangular cavity. The performances of turbulence models are investigated through comparison with available experimental data. The predicted results of vertical velocity component, turbulent heat fluxes, turbulent shear stress, local Nusselt number and wall shear stress are compared with experimental data. It is shown that, among the turbulence models considered in the present study, the k-ε-vv-f model with an algebraic heat flux model predicts best the vertical mean velocity and velocity fluctuation, and the inclusion of algebraic heat flux model slightly improves the accuracy of results.

CFD evaluation of a suitable site for a wind turbine on a trapezoid shaped hill

  • Unchai, Thitipong;Janyalertadun, Adun
    • Wind and Structures
    • /
    • 제19권1호
    • /
    • pp.75-88
    • /
    • 2014
  • The computational fluid dynamic is used to explore new aspects of the hill flow. This analysis focuses on flow dependency and the comparison of results from measurements and simulations to show an optimization turbulent model and the possibility of replacing measurements with simulations. The first half of the paper investigates a suitable turbulence model for determining a suitable site for a wind turbine. Results of the standard k-${\varepsilon}$ model are compared precisely with the measurements taken in front of the hilltop, The Reynolds Stress Model showed exact results after 1.0 times of hill steepness but the standard k-${\varepsilon}$ model and standard k-${\omega}$ model showed greater underestimation. In addition, velocity flow over Pha Taem hill topography and the reference geometry shape were compared to find a suitable site for a turbine in case the actual hill structure was associated with the trapezoid geometric shape. Further study of geometry shaped hills and suitable sites for wind turbines will be reported elsewhere.

CUPID 코드를 활용한 2×2 봉다발 부수로 유동 해석 (ASSESSMENT OF THE CUPIDCODE APPLICABILITY TO SUBCHANNEL FLOW IN 2×2 ROD BUNDLE)

  • 이재룡;박익규;김정우
    • 한국전산유체공학회지
    • /
    • 제21권4호
    • /
    • pp.71-77
    • /
    • 2016
  • The CUPID code is a transient, three-dimensional, two-fluid, thermal-hydraulic code designed for a component-scale analysis of nuclear reactor components. The primary objective of this study is to assess the applicability of CUPID to single-phase turbulent flow analyses of $2{\times}2$ rod bundle subchannel. The bulk velocity at the inlet varies from 1.0 m/s up to 2.0 m/s which is equivalent to the fully turbulent flow with the range of Re=12,500 to 25,000. Adiabatic single-phase flow is assumed. The velocity profile at the exit region is quantitatively compared with both experimental measurement and commercial CFD tool. Three different boundary conditions are simulated and quantitatively compared each other. The calculation results of CUPID code shows a good agreement with the experimental data. It is concluded that the CUPID code has capability to reproduce the turbulent flow behavior for the $2{\times}2$ rod bundle geometry.

3차원 미니밴 형상 주위의 비압축성 점성 유동 해석 (Incompressible Viscous Flow Analysis Around a Three Dimensional Minivan-Like Body)

  • 정영래;박원규;박영준;김종섭;홍성훈
    • 한국전산유체공학회지
    • /
    • 제2권1호
    • /
    • pp.46-53
    • /
    • 1997
  • The flow field around a three dimensional minivan-like body has been simulated. This study solves 3-D unsteady incompressible Navier-Stokes equations on a non-orthogonal curvilinear coordinate system using second-order accurate schemes for the time derivatives, and third/second-order scheme for the spatial derivatives. The Marker-and-Cell concept is applied to efficiently solve continuity equation. A H-H type of multi-block grid system is generated around a three dimensional minivan-like body. Turbulent flows have been modeled by the Baldwin-Lomax turbulent model. To validate present procedure, the flows around the Ahmed body with 12.5° of slant angle are simulated. A good agreement with other numerical results is achived. After code validation, the flows around a mimivan-like body are simulated. The simulation shows three dimensional vortex-pair just behind body. The flow separation is also observed on the rear of the body. It has concluded that the results of present study properly agreed with physical flow phenomena.

  • PDF

생체모방공학을 적용한 고속철 차간 공간의 공력소음 연구 (Analysis of aerodynamic noise at inter-coach space of high speed trains based on biomimetic analogy)

  • 한재현;김태민;김정수
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2011년도 추계학술대회 논문집
    • /
    • pp.711-716
    • /
    • 2011
  • Today, high-speed trains enjoy wide acceptance as fast, convenient and environment-friendly means of transportation. However, increase in the speed of the train entails a concomitant increase in the aerodynamic noise, adversely affecting the passenger comfort. At the train speed exceeding 300 km/h, the effects of turbulent flows and vortex sheddding are greatly amplified, contributing to a significant increase in the aerodynamic noise. Drawing a biomimetic analogy from low-noise flight of owl, a method to reduce aerodynamic noise at inter-coach space of high-speed trains is investigated. The proposed method attempts to achieve the noise reduction by modifying the turbulent flow and vortex shedding characteristics at the inter-coach space. To determine the aerodynamic noise at various train speeds, wind tunnel testing and numerical CFD (Computational Fluid Dynamics) simulation for the basic inter-coach spacing model are carried out, and their results compared. The simulation and experimental results reveal that there are discrete frequency components associated with turbulent air flow at constant intervals in the frequency domain

  • PDF

2엽형 수직축 풍력발전기의 유동해석 및 실험 비교 (AERODYNAMIC ANALYSIS AND COMPARISON OF EXPERIMENTAL DATA FOR 2-BLADED VERTICAL AXIS WIND TURBINE)

  • 황미현;김동현;이종욱;오민우;김명환;류경중
    • 한국전산유체공학회지
    • /
    • 제15권4호
    • /
    • pp.85-91
    • /
    • 2010
  • In this study, aerodynamic analyses based on unsteady computational fluid dynamics (CFD) have been conducted for a 2-bladed vertical-axis wind turbine (VAWT) configuration. Reynolds-averaged Navier-Stokes equations with standard $k-{\varepsilon}$ and SST $k-{\varepsilon}$ turbulence models are solved for unsteady flow problems. The experiment model of 2-bladed VAWT has been designed and tested in this study. Aerodynamic experiment of the present VAWT model are effectively conducted using the vehicle mounted testing system. The comparison result between the experiment and the computational fluid dynamics (CFD) analysis are presented in order to verify the accuracy of CFD modeling with different turbulent models.

HVAC 덕트내의 3차원 난류유동에 관한 수치해석적 연구 (Numerical Analysis of Three Dimensional Turbulent Flow in a HVAC Duct)

  • 정수진;류수열;김태훈
    • 한국자동차공학회논문집
    • /
    • 제4권4호
    • /
    • pp.118-129
    • /
    • 1996
  • In this study, three dimensional flow analysis in a HVAC duct was performed computationally using various turbulence models and compared numerical predictions such as outlet flow split, surface pressure distribution along the duct to experimental data. It's well known that accuracy of computational predictions of flow heavily dependent on turbulent models and discritization method. Therefore, in this work, to assess the ability of turbulent models to predict characteristics of duct flow, three kinds of models, namely standard $k-\varepsilon$, RNG $k-\varepsilon$ and modified $k-\varepsilon$, containing parameter for the effect of streamline curvature were employed and validated one another by comparing with experimental data. In results, modified $k-\varepsilon$ turbulence model allows a successful prediction of static pressure distribution particulary at around strong curvature but little improvement flow split. In the futrue, adoption of CFD to design HVAC duct with modified $k-\varepsilon$ model will bring benefits of producing more accurate prediction, and also give designers more detail information much more than now.

  • PDF