• 제목/요약/키워드: Turbulent Shear Stress

검색결과 215건 처리시간 0.028초

축방향 난류경계층에서 벽면마찰 섭동량의 공간 및 시간에 따른 특성 (Space-Time Characteristics of the Wall Shear-Stress Fluctuations in a Low-Reynolds Number Axial Turbulent Boundary Layer)

  • 신동신
    • 설비공학논문집
    • /
    • 제15권11호
    • /
    • pp.895-901
    • /
    • 2003
  • Direct numerical simulation database of an axial turbulent boundary layer is used to compute frequency and wave number spectra of the wall shear-stress fluctuations in a low-Reynolds number axial turbulent boundary layer. One-dimensional and two-dimensional power spectra of flow variables are calculated and compared. At low wave numbers and frequencies, the power of streamwise shear stress is larger than that of spanwise shear stress, while the powers of both stresses are almost the same at high wave numbers and frequencies. The frequency/streamwise wave number spectra of the wall flow variables show that large-scale fluctuations to the ms value is largest for the streamwise shear stress, while that of small-scale fluctuations to the rms value is largest for pressure. In the two-point auto-correlations, negative correlation occurs in streamwise separations for pressure and spanwise shear stress, and in spanwise correlation for both shear stresses.

Space-Time Characteristics of the Wall Shear-Stress Fluctuations in an Axial Turbulent Boundary Layer with Transverse Curvature

  • Shin, Dong-Shin;Lee, Seung-Bae;Na, Yang
    • Journal of Mechanical Science and Technology
    • /
    • 제19권8호
    • /
    • pp.1682-1691
    • /
    • 2005
  • Direct numerical simulation database of an axial turbulent boundary layer is used to compute frequency and wave number spectra of the wall shear-stress fluctuations in a low-Reynolds number axial turbulent boundary layer. One-dimensional and two-dimensional power spectra of flow variables are calculated and compared. At low wave numbers and frequencies, the power of streamwise shear stress is larger than that of spanwise shear stress, while the powers of both stresses are almost the same at high wave numbers and frequencies. The frequency/streamwise wave number spectra of the wall flow variables show that large-scale fluctuations to the rms value is largest for the stream wise shear stress, while that of small-scale fluctuations to the rms value is largest for pressure. In the two-point auto-correlations, negative correlation occurs in streamwise separations for pressure, and in span wise correlation for both shear stresses.

Computation of a Turbulent Natural Convection in a Rectangular Cavity with the Low-Reynolds-Number Differential Stress and Flux Model

  • Choi, Seok-Ki;Kim, Eui-Kwang;Wi, Myung-Hwan;Kim, Seong-O
    • Journal of Mechanical Science and Technology
    • /
    • 제18권10호
    • /
    • pp.1782-1798
    • /
    • 2004
  • A numerical study of a natural convection in a rectangular cavity with the low-Reynolds-number differential stress and flux model is presented. The primary emphasis of the study is placed on the investigation of the accuracy and numerical stability of the low-Reynolds-number differential stress and flux model for a natural convection problem. The turbulence model considered in the study is that developed by Peeters and Henkes (1992) and further refined by Dol and Hanjalic (2001), and this model is applied to the prediction of a natural convection in a rectangular cavity together with the two-layer model, the shear stress transport model and the time-scale bound ν$^2$- f model, all with an algebraic heat flux model. The computed results are compared with the experimental data commonly used for the validation of the turbulence models. It is shown that the low-Reynolds-number differential stress and flux model predicts well the mean velocity and temperature, the vertical velocity fluctuation, the Reynolds shear stress, the horizontal turbulent heat flux, the local Nusselt number and the wall shear stress, but slightly under-predicts the vertical turbulent heat flux. The performance of the ν$^2$- f model is comparable to that of the low-Reynolds-number differential stress and flux model except for the over-prediction of the horizontal turbulent heat flux. The two-layer model predicts poorly the mean vertical velocity component and under-predicts the wall shear stress and the local Nusselt number. The shear stress transport model predicts well the mean velocity, but the general performance of the shear stress transport model is nearly the same as that of the two-layer model, under-predicting the local Nusselt number and the turbulent quantities.

난방기용 콘형 가스버너에서 3차원 난류 유동장 고찰 - 난류특성치에 대하여 - (Investigation of the Three-dimensional Turbulent Flow Fields in Cone Type Gas Burner for Furnace - On the Turbulent Characteristics -)

  • 김장권;정규조;김석우;김인규
    • 동력기계공학회지
    • /
    • 제5권1호
    • /
    • pp.21-26
    • /
    • 2001
  • This paper represents the turbulent intensity, the turbulent kinetic energy and Reynolds shear stress in the X-Y plane of cone type swirl gas burner measured by using X-probe from the hot-wire anemometer system. The experiment is carried out at flowrate 350 and $450{\ell}/min$ respectively in the test section of subsonic wind tunnel. The turbulent intensity and the turbulent kinetic energy show that the maximum value is formed in the narrow slits distributed radially on the edge of a cone type swirl burner, hence, the combustion reaction is anticipated to occur actively near this region. And the turbulent intensities ${\upsilon}\;and\;{\omega}$ are disappeared faster than the turbulent intensity u due to the inclined flow velocity ejecting from the swirl vanes of a cone type baffle plate of burner. Moreover, the Reynolds shear stress $u{\upsilon}$ is distributed about three times as large as the Reynolds shear stress $u{\omega}$ in the outer region of the cone type gas burner.

  • PDF

가진 펌프에 연결된 곡관 출구의 직관에서 난류진동유동의 속도분포와 전단응력분포 (Velocity Profile and Wall Shear Stress Distributions of Developing Turbulent Oscillatory Flows in an Oscillator Connected to Straight Duct Located in Exit Region of a Curved Duct)

  • 손현철;이행남;박길문
    • 대한기계학회논문집B
    • /
    • 제26권10호
    • /
    • pp.1378-1386
    • /
    • 2002
  • In the present study, velocity profile and wall shear stress distributions of developing turbulent oscillatory flows in an oscillator connected to straight duct located in exit region of a curved duct was investigated experimentally. The experimental study for air flows was conducted to measure axial velocity profiles, shear stress distributions by using the Laser Doppler Velocimetry(LDV) system with the data acquisition and processing system of Rotating Machinery Resolver(R.M.R) and PHASE software. The results obtained from experimental studies are summarized as follows. The critical Reynolds number for a change from transitional oscillatory flow to turbulent flow was about 7500, in the 60region of dimensionless axial position which was considered as a fully developed flow region. The turbulent oscillatory flow, velocity profiles of the inflow period in the entrance region were gradually developed, but those of the outflow period were not changed nearly. Velocity profiles of inflow and outflow were shown as a symmetric form in a fully developed flow region. The wall shear stress distributions of turbulent oscillatory flow increase rapidly as the flow proceeds to downstream and flow was in good agreement with the theoretically.

정4각단면덕트의 입구영역에서 난류맥동유동의 압력분포, 전단응력분포와 관마찰계수에 관한 연구(Ⅰ), - 실험해석- (A Study on Pressure Distribution, Wall Shear Stress and Friction Factor of Developing Turbulent Pulsating Flows in a Square Duct(Ⅰ), -Experimental Analysis-)

  • 박길문;조병기;고영하;봉태근
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제20권5호
    • /
    • pp.58-67
    • /
    • 1996
  • In the present study, the pressure distribution, wall shear stress distribution and friction factor of developing turbulent pulsating flows are investigated theoretically and experimentally in the entrance region of a square duct. The pressure distribution for turbulent pulsating flows are in good agreement with the theoretical values. The time-averaged pressure gradients of the turbulent pulsating flows show the same tendency as those of turbulent steady flows as the time-averged Reynolds number $(Re_{ta})$ increase. Mean shear stresses in the turbulent pulsating flow increase more in the inlet flow region than in the fully developed flow region and approach to almost constant value in the fully developed flow region. In the turbulent pulsating flow, the friction factor of the quasi-steady state flow $({\lambda}_{q, tu})$ follow friction factor's law in turbulent steady flow. The entrance length of the turbulent pulsating flow is not influenced by the time-averaged Reynolds number $(Re_{ta})$ and it is about 40 times as large as the hydraulic diameter.

  • PDF

프레스톤 튜브를 이용한 벽면전단응력 측정에 관한 실험적 연구 (Measurement of Wall Shear Stress Using Preston Tubes)

  • 강신형;윤민수;전우평
    • 대한기계학회논문집
    • /
    • 제18권7호
    • /
    • pp.1873-1880
    • /
    • 1994
  • Fully developed turbulent flow in a circular pipe and laminar boundary layer on a flat plate were measured to develop a measuring technique of the wall sheat stress using Preston tubes. New empirical formulas to extimate displacement factor of Preston tube obtained through the present study. The displacement factor for turbulent flow was considerably different from that for the laminar flow. Measured wall shear stress was not pretty dependent on the displacement factor for Preston tubes in the inertia sublayer of turbulent boundary layer, however was considerably affected in the laminar boundary layer. Measuring error of skin friction using the CPM technique was 3% for turbulent and 5% for thin laminar boundary layers.

난류 채널 유동 내부의 레이놀즈 전단 응력 분포 (Reynolds Shear Stress Distribution in Turbulent Channel Flows)

  • 김경연
    • 대한기계학회논문집B
    • /
    • 제36권8호
    • /
    • pp.829-837
    • /
    • 2012
  • 벽면 난류의 항력과 밀접한 관련이 있는 유동구조를 조사하기 위해 $Re_{\tau}$ = 180, 395, 590 의 난류채널유동에 대한 직접수치모사를 수행하였다. 확률밀도함수를 조사하여 레이놀즈 전단응력에 가장 큰 기여를 하는 Q2 이벤트를 파악하였으며 Q2 이벤트의 각도의 변화가 $y^+<50$ 에서는 벽 단위로 스케일링되며, y/h > 0.5 에서는 채널의 높이로 스케일링 됨을 확인하였다. Q2 이벤트를 조건으로 하는 조건부 평균 유동장을 조사하여 레이놀즈 전단응력의 발생과 관련이 있는 유동구조는 주 유동방향의 보텍스 및 헤어핀 형상의 보텍스임을 보였다. 또한, 순간 유동장을 관찰하여 높은 레이놀즈 전단 응력의 분포가 이러한 보텍스 구조와 관련이 있으며 1.5 ~ 3h 의 크기를 갖는 대형유동구조를 구성함을 확인하였다.

표면조도가 난류구조에 미치는 영향 (Organized structure of turbulent boundary layer with rod-roughened wall)

  • 이재화;이승현;김경연;성형진
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2008년도 춘계학술대회논문집
    • /
    • pp.189-192
    • /
    • 2008
  • Turbulent coherent structure near rod-roughened wall are investigated by analyzing the database of direct numerical simulation of turbulent boundary layer. The roughness sublayer id defined as two-point correlations are not independent of streamwise locations around roughness. The roughness sublayer based on the two-point spatial correlation is different from that given by one-point statistics. Quadrant analysis and probability-weighted Reynolds shear stress indicate that turbulent structures are not affected by surface roughness above the roughness sublayer defined by the spatial correlations. The conditionally-averaged flow fields associated with Reynolds shear stress producing Q2/Q4 events show that though turbulent vortices are affected in the roughness sublayer, these are very similar at different streamwise locations above the roughness sublayer. The Reynolds stress producing turbulent vortices in the log layer have almost the same geometrical shape as those in the smooth wall-bounded turbulent flows. This suggests that the mechanism by which the Reynolds stress is produced in the log layer has not been significantly affected by the present surface roughness.

  • PDF

표면조도가 있는 난류경계층 내 난류구조 (Organized Structure of Turbulent Boundary Layer with Rod-roughened Wall)

  • 이재화;이승현;김경연;성형진
    • 대한기계학회논문집B
    • /
    • 제32권6호
    • /
    • pp.463-470
    • /
    • 2008
  • Turbulent coherent structures near rod-roughened wall are investigated by analyzing the database of direct numerical simulation of turbulent boundary layer. The surface roughness rods with the height $k/{\delta}=0.05$ are arranged periodically in $Re_{\delta}=9000$. The roughness sublayer is defined as two-point correlations are not independent of streamwise locations around roughness. The roughness sublayer based on the two-point spatial correlation is different from that given by one-point statistics. Quadrant analysis and probability-weighted Reynolds shear stress indicate that turbulent structures are not affected by surface roughness above the roughness sublayer defined by the spatial correlations. The conditionally-averaged flow fields associated with Reynolds shear stress producing Q2/Q4 events show that though turbulent vortices are affected in the roughness sublayer, these are very similar at different streamwise locations above the roughness sublayer. The Reynolds stress producing turbulent vortices in the log layer ($y/{\delta}=0.15$)have almost the same geometrical shape as those in the smooth wall-bounded turbulent flows. This suggests that the mechanism by which the Reynolds stress is produced in the log layer has not been significantly affected by the present surface roughness.