• Title/Summary/Keyword: Turbulent Scale

Search Result 398, Processing Time 0.024 seconds

Coherent Structures of Turbulent Wake Past a Rotating Circular Cylinder with a Tripping Wire (Tripping wire가 부착된 회전원주에 의한 난류휴류의 응집구조)

  • 부정숙;이종춘
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.8
    • /
    • pp.1927-1939
    • /
    • 1995
  • An experimental investigation is conducted to find out the large scale coherent structures in the intermediate wake past a rotating cylinder with a single tripping wire attached. Relation between the vortex shedding frequency and the spin rate of rotating cylinder and the effects of the tripping wire on the flow characteristics were studied by using spectral analysis and conditional phase average technique, respectively. It is found that the vortex shedding frequency is bound to a certain range and varies regularly as spin rate increases. The coherent structures are compared with those of the plain rotating cylinder in the case of spin rate of 1.0. Distance between the upper and lower center of vortices increase and the vortex shedding time is delayed, the velocity fluctuation energy decreases near the center line of vortices and it spreads out to the outer region. The Reynolds shear stress increases highly in the upper region and the turbulent wake width expands with strong entrainment process.

Large Eddy Simulation for a 2-D hydrofoil using VIC(Vortex-In-Cell) method (VIC 방법을 사용한 2차원 날개의 LES 해석)

  • Kim, M.S.;Kim, Y.C.;Suh, J.C.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.407-413
    • /
    • 2011
  • VIC (Vortex-In-Cell) method for viscous incompressible flow is presented to simulate the wake behind a modified NACA16 foil. With uniform rectangular grid, the velocity in field is calculated using streamfunction from vorticity field by solving the Poisson equation in which FFT(Fast Fourier Transform) is combined with 2nd order finite difference scheme. Here, LES(Large Eddy Simulation) with Smagorinsky model is applied for turbulence calculation. Effective viscosity is formulated using magnitude of strain tensor(or vorticity). Then the turbulent diffusion as well as viscous diffusion becomes particle strength exchange(PSE) with averaged eddy viscosity. The well-established panel method is combined to obtain the irrotational velocity and to apply the no-penetration boundary condition on the body panel. And wall diffusion is used for no-slip condition numerical results of turbulent stresses are compared with experimental results (Bourgoyne, 2003). Before comparing process, LES(Large Eddy Simulation) SGS(Subgrid scale) stress is transformed Reynolds averaged stress (Winckelmans, 2001).

  • PDF

Large Eddy Simulation of Flow around a Bluff Body of Vehicle Shape

  • Jang, Dong-Sik;Lee, Yeon-Won;Doh, Deug-Hee;Toshio Kobayashi;Kang, Chang-Soo
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.12
    • /
    • pp.1835-1844
    • /
    • 2001
  • The turbulent flow with wake, reattachment and recirculation is a very important problem that is related to vehicle dynamics and aerodynamics. The Smagorinsky Model (SM), the Dynamics Subgrid Scale Model (DSM), and the Lagrangian Dynamic Subgrid Scale Model (LDSM) are used to predict the three-dimensional flow field around a bluff body model. The Reynolds number used is 45,000 based on the bulk velocity and the height of the bluff body. The fully developed turbulent flow, which is generated by the driver part, is used for the inlet boundary condition. The Convective boundary condition is imposed on the outlet boundary condition, and the Spalding wall function is used for the wall boundary condition. We compare the results of each model with the results of the PIV measurement. First of all, the LES predicts flow behavior better than the k-$\xi$ turbulence model. When ew compare various LES models, the DSM and the LDSM agree with the PIV experimental data better than the SM in the complex flow, with the separation and the reattachment at the upper front part of th bluff body. But in the rear part of the bluff body, the SM agrees with the PIV experimental results better than them. In this case, the SM predicts overall flow behavior better than the DSM nd the LDSM.

  • PDF

A Numerical Analysis of Flow Characteristics in a Heat Recovery Steam Generator with the Change of Inlet Flow Conditions (배열회수보일러(HRSG)의 입구유동 경계조건에 따른 유동특성 변화에 관한 연구)

  • Kim, Tae-Kwon;Lee, Boo-Yoon;Ha, Ji-Soo
    • Journal of the Korean Institute of Gas
    • /
    • v.15 no.3
    • /
    • pp.53-57
    • /
    • 2011
  • The present study has been carried out to analyze the flow characteristics of a heat recovery steam generator with the change of inlet flow conditions by using numerical flow analysis. The inlet of HRSG corresponds the outlet of gas turbine exit and the flow after gas turbine has strong swirl flow and turbulence. The inlet flow condition of HRSG should be included the exit flow characteristics of gas turbine. The present numerical analysis adopted the flow analysis result of gas turbine exit flow as a inlet flow condition of HRSG analysis. The computational flow analysis result of gas turbine exit shows that the maximum axial velocity appears near circular duct wall and the maximum turbulent kinetic energy and dissipation rate exist relatively higher gradient region of axial velocity. The comparison of flow analysis will be executed with change of inlet turbulent flow condition. The first case is using the inlet turbulent properties from the result of computational analysis of gas turbine exit flow, and the second case is using the assumed turbulent intensity with the magnitude proportional to the velocity magnitude and length scale. The computational results of flow characteristics for two cases show great difference especially in the velocity field and turbulent properties. The main conclusion of the present study is that the flow inlet condition of HRSG should be included the turbulent properties for the accurate computational result of flow analysis.

Spatial Distributions of Spanwise Vortices in a Turbulent Boundary Layer over a Micro-riblet Film (미세 리블렛 평판 상부 난류경계층 유동에서 횡방향 와의 공간적 분포특성)

  • Choi, Yong-Seok;Lee, Sang-Joon
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2660-2665
    • /
    • 2007
  • Turbulent boundary-layer over a micro-riblet film(MRF) was investigated experimentally. The MRF has sharp V-shaped micro scale grooves of $300{\mu}m$ in width and $176.8{\mu}m$ in height. Particle image velocimetry(PIV) system was employed to measure velocity fields of flow over the MRF coated plate. Flow over a smooth plate was also measured for comparison. The PIV measurements were taken in the streamwise wall-normal planes at Re$\theta$= 985 and 2342. Vortex structures of the flow were analyzed by extracting the swirling strength as an unambiguous vortex-identification criterion. As a result the number of spanwise vortices with clockwise(negative) rotation decreases rapidly in the near-wall region(y<0.2h), but decreases slowly in the outer region(0.2h

  • PDF

NUMERICAL STUDY ON TURBULENT FLOW OVER CYLINDER USING IMMERSED BOUNDARY LATTICE BOLTZMANN METHOD WITH MULTI RELAXATION TIME (다중완화시간 가상경계볼쯔만법을 이용한 실린더 주위의 난류유동해석)

  • Kim, Hyung-Min
    • Journal of computational fluids engineering
    • /
    • v.15 no.2
    • /
    • pp.21-27
    • /
    • 2010
  • Immersed boundary lattice Boltzmann method (IBLBM) has been applied to simulate a turbulent flow over circular cylinder in a flow field effectively. Although IBLBM is very effective method to simulate the flow over a complex shape of obstacle in the flow field regardless of the constructed grids in the calculation domain, the results, however, become numerically unstable in high reynolds number flow. The most effective suggestion to archive the numerical stability in high Reynolds number flow is applying the multiple relaxation time (MRT) model instead of single relaxation time(SRT) model in the collision term of lattice Boltzmann equation. In the research MRT model for IBLBM was introduced and comparing the numerical results obtained by applying SRT and MRT. The hydraulic characteristic of cylinder in a flow field between two parallel plate at the range of $Re{\leqq}2000$represented and it is also compared the drag and lifting coefficients of the cylinder calculated by IBLBM with SRT and MRT model.

Influence of Unsteady Wake on Turbulent Separated Flows over a Backward-Facing Step (후향 계단 주위 난류 박리 유동에 대한 비정상 후류의 영향)

  • Chun, Se-Jong;Sung, Hyung-Jin
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.12
    • /
    • pp.1708-1715
    • /
    • 2003
  • An experimental study was made of turbulent separated and reattaching flow over a backward-facing step, where unsteady wake was generated by a spoked-wheel type wake generator with cylindrical rods in front of the separated flow. The influence of unsteady wake was scrutinized in terms of the rotating speed of the wake generator (0$\leq$S $t_{H}$$\leq$0.4). A conditional averaging technique in corporation with SBF was employed to elucidate the influence of the unsteady wake on the large-scale vortical structures of the separated flow. Special attention was made during two-dimensional measurements of wall-pressure with or without unsteady wake. The wall-pressure fluctuations were used to predict dipole sound source by Curie's integral formula. It was found that the reduction of the dipole sound source was due to the reduction of turbulent kinetic energy by unsteady wake in the recirculation region.n.

Influence of Periodic Blowing and Suction on a Turbulent Boundary Layer (주기적인 분사/흡입이 난류경계층에 미치는 영향)

  • Park Young-Soo;Park Sang-Hyun;Sung Hyung Jin
    • Journal of the Korean Society of Visualization
    • /
    • v.1 no.1
    • /
    • pp.64-74
    • /
    • 2003
  • An experimental study was carried out to investigate the effect of periodic blowing and suction on a turbulent boundary layer. Particle image velocimetry (PIV) was used to probe the characteristics of the flow. The local forcing was introduced to the boundary layer via a sinusoidally-oscillating jet issuing from a thin spanwise slot. Three forcing frequencies (f$^{+}$=0.044, 0.066 and 0.088) with a fixed forcing amplitude (A$^{+}$=0.6) were employed at $Re_{=690. The effect of the forcing angles ($\alpha$=60$^{\circ}$ , 90$^{\circ}$ and 120$^{\circ}$ ) was investigated under the fixed forcing frequency (f$^{+}$=0.088). The PIV results showed that the wall region velocity decreases on imposition of the local forcing. Inspection of phase-averaged velocity profiles revealed that spanwise large-scale vortices were generated in the downstream of the slot and persist further downstream. The highest reduction in skin friction was achieved at highest forcing frequency (f$^{+}$=0.088) and a forcing angle of $\alpha$=120$^{\circ}$. The spatial fraction of the vortices was examined to analyze the skin friction reduction.

  • PDF

ASSESSMENT OF THE CUPIDCODE APPLICABILITY TO SUBCHANNEL FLOW IN 2×2 ROD BUNDLE (CUPID 코드를 활용한 2×2 봉다발 부수로 유동 해석)

  • Lee, J.R.;Park, I.K.;Kim, J.
    • Journal of computational fluids engineering
    • /
    • v.21 no.4
    • /
    • pp.71-77
    • /
    • 2016
  • The CUPID code is a transient, three-dimensional, two-fluid, thermal-hydraulic code designed for a component-scale analysis of nuclear reactor components. The primary objective of this study is to assess the applicability of CUPID to single-phase turbulent flow analyses of $2{\times}2$ rod bundle subchannel. The bulk velocity at the inlet varies from 1.0 m/s up to 2.0 m/s which is equivalent to the fully turbulent flow with the range of Re=12,500 to 25,000. Adiabatic single-phase flow is assumed. The velocity profile at the exit region is quantitatively compared with both experimental measurement and commercial CFD tool. Three different boundary conditions are simulated and quantitatively compared each other. The calculation results of CUPID code shows a good agreement with the experimental data. It is concluded that the CUPID code has capability to reproduce the turbulent flow behavior for the $2{\times}2$ rod bundle geometry.

Influence of Coal Conversion Model and Turbulent Mixing Rate in Numerical Simulation of a Pulverized-coal-fired Boiler (미분탄 보일러 연소 해석에서 석탄 반응 모델 및 난류 혼합 속도의 영향 평가)

  • Yang, Joo-Hyang;Kim, Jung-Eun A.;Ryu, Changkook
    • Journal of the Korean Society of Combustion
    • /
    • v.20 no.3
    • /
    • pp.35-42
    • /
    • 2015
  • Investigating coal combustion in a large-scale boiler using computational fluid dynamics (CFD) requires a combination of flow and reaction models. These models include a number of rate constants which are often difficult to determine or validate for particular coals or furnaces. Nonetheless, CFD plays an important role in developing new combustion technologies and improving the operation. In this study, the model selection and rate constants for coal devolatilization, char conversion, and turbulent reaction were evaluated for a commercial wall-firing boiler. The influence of devolatilization and char reaction models was found not significant on the overall temperature distribution and heat transfer rate. However, the difference in the flame shapes near the burners were noticeable. Compared to the coal conversion models, the rate constant used for the eddy dissipation rate of gaseous reactions had a larger influence on the temperature and heat transfer rate. Based on the operation data, a value for the rate constant was recommended.