• Title/Summary/Keyword: Turbulent Model

Search Result 1,708, Processing Time 0.047 seconds

A Tensor Invariant Dissipation Equation Accounting for Extra Straining Effects (이차적인 변형률효과를 고려한 텐서 불변성 난류에너지 소산율방정식)

  • 명현국
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.4
    • /
    • pp.967-976
    • /
    • 1994
  • A tensor invariant model equation for the turbulent energy dissipation rate is proposed in the present study, which is able to simulate secondary straining effects such as curvature effects without the introduction of additional empirical input. The source term in this model has a combined form of the generation term due to the mean vorticity with the conventional one due to the mean strain rate. An extended low-Reynolds-number $k-\epsilon$ turbulence model involving this new model equation is tested for a turbulent Coutte flow between coaxial cylinders with inner cylinder rotated, which is a well defined example of curved flows. The predicted results indicate that the present model works much better for this flow, compared with previous models.

Evaluation of the Anisotropic k - ${\epsilon}$ Turbulence Model by the Numerical Analysis of Axisymmetric Swirling Turbulent Flow (축대칭 선회난류의 수치해석에 의한 비등방 k - ${\epsilon}$ 난류모델의 評價)

  • Lee, Yeon-Won
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.20 no.5
    • /
    • pp.39-44
    • /
    • 1996
  • To overcome weak poinks of the standard k-${\varepsilon}$ turbulence model when applied to complex turbulent flows, various modified models were proposed. But their effects are confined to special flow fields. They have still some problems. Recently, an anisotropic k-${\varepsilon}$ turbulence model was also proposed to solve the drawback of the standard k-${\varepsilon}$ turbulence model. This study is concentrated on the evaluation of the anisotropic k-${\varepsilon}$ turbulence model by the analysis of axisymmetric swirling turbulent flow. Results show that the anisotropic k-${\varepsilon}$ turbulence model has scarecely the fundamentally physical mechanism of predicting the swirling structure of flow.

  • PDF

Numerical Simulation of Flow and Heat Transfer Characteristics of Impinging Jet Using $k-{\varepsilon}-{\overline{v^{'2}}}$ Model ($k-{\varepsilon}-{\overline{v^{'2}}}$난류 모델을 이용한 충돌 제트의 유동 및 열전달 특성에 관한 수치해석적 연구)

  • Choi, Bum-Ho;Lee, Jung-Hee;Choi, Young-Ki
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.2
    • /
    • pp.204-213
    • /
    • 2000
  • This study deals with jet impingement, which is extensively used in the process industries to achieve intense heating, cooling or drying rates and also widely employed as a test flow for turbulent models due to its complex flow configuration, on a flat plate by numerical methods. In this calculation, the finite volume method was employed to solve the Navier-stokes equation based on the non-orthogonal coordinate with non-staggered variable arrangement. To get a better understanding for the fluid flow and heat transfer characteristics of the turbulent jet impingements, $k-{\varepsilon}-{\overline{v^{'2}}}$ turbulent model was adapted and compared with the experimental data and the result of standard $k-{\varepsilon}$ turbulent model. Numerical calculations were carried out with various flow rates, nozzle to plate distances. In the case of the axisymmetric jet impingement on a flat plate, $k-{\varepsilon}-{\overline{v^{'2}}}$ turbulent model showed better agreement with the experimental data than the standard $k-{\varepsilon}$ turbulent model in the prediction of the mean velocity profiles, the turbulent velocity profiles. the turbulent shear stress and the heat transfer rate. The highest heat transfer rate can be obtained when the impingement occurs within the potential core..

Redeveloping Turbelent Boundary Layer after Separation-Reattachment(II) -A Consideration on Turbulence Models- (박리-재부착 이후의 재발달 난류경계층 II -난류 모델들에 관한 고찰-)

  • 백세진;유정열
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.13 no.5
    • /
    • pp.999-1011
    • /
    • 1989
  • A consideration on the trubulence models for describing the redeveloping turbulent boundary layer beyond separation-reattachment in the flow over a backward-facing step is given through experimental and numerical studies. By considering the blance among the measured values of respective terms in the transport equations for the turbulent kinetic energy and the turbulent shear stress, the recovering process of the redeveloping boundary layer from non-equilibrium to equilibrium has been investigated, which takes place slowly over a substantial distance in the downstream direction. In the numerical study, the standard K-.epsilon. model and the Reynolds stress model have been applied to two kinds of flow regions, one for the entire downstream region after the backward-facing step and another for the downstream region after reattachment. Then the results are compared to a meaningful extent, with the experimental values of the turbulent kinetic energy k, the turbulent energy production term P, the dissipation term K-.epsilon. model, a necessity for a new modelling has been brought forward, which can be also applied to the case of the nonequlibrium turbulent flow.

A Study on the Development of Low Reynolds Number k-$\varepsilon$ Turbulence Model (저레이놀즈수 k-$\varepsilon$난류모형 개선에 관한 연구)

  • 김명호;신종근;최영돈
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.10
    • /
    • pp.1940-1954
    • /
    • 1992
  • Fine grid computations were attempted to analyze the turbulent flows in the near wall low Reynolds number region and the numerical analyses were incorporated by a finite-volume discretization with full find grid system and low Reynolds number k-.epsilon. model was employed in this region. For the improvement of low Reynolds number k-.epsilon. model, modification coefficient of eddy viscosity $f_{\mu}$ was derived as a function of turbulent Reynolds number $R_{+}$ and nondimensional length $y^{+}$ from the concept of two length scales of dissipation rate of turbulent kinetic energy. The modification coefficient $f_{\epsilon}$ in .epsilon. transport equation was also derived theoretically. In the turbulent kinetic energy equation, pressure diffusion term was added in order to consider low Reynolds number region effect. The main characteristics of this low Reynolds number k-.epsilon. model were founded as : (1) In high Reynolds number region, the present model has limiting behavior which approaches to the high Reynolds number model. (2) Present low Reynolds number k-.epsilon. model dose not need additional empirical constants for the transport equations of turbulent kinetic energy and dissipation of turbulent kinetic energy in order to consider wall effect. Present low Reynolds number turbulence model was tested in the pipe flow and obtained improved results in velocity profiles and Reynolds stress distributions compared with those from other k-.epsilon. models.s.s.

Comparison of Two-Equation Model and Reynolds Stress Models with Experimental Data for the Three-Dimensional Turbulent Boundary Layer in a 30 Degree Bend

  • Lee, In-Sub;Ryou, Hong-Sun;Lee, Seong-Hyuk;Chae, Soo
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.1
    • /
    • pp.93-102
    • /
    • 2000
  • The objective of the present study is to investigate the pressure-strain correlation terms of the Reynolds stress models for the three dimensional turbulent boundary layer in a $30^{\circ}$ bend tunnel. The numerical results obtained by models of Launder, Reece and Rodi (LRR) , Fu and Speziale, Sarkar and Gatski (SSG) for the pressure-strain correlation terms are compared against experimental data and the calculated results from the standard k-${\varepsilon}$ model. The governing equations are discretized by the finite volume method and SIMPLE algorithm is used to calculate the pressure field. The results show that the models of LRR and SSG predict the anisotropy of turbulent structure better than the standard k-${\varepsilon}$ model. Also, the results obtained from the LRR and SSG models are in better agreement with the experimental data than those of the Fu and standard k-${\varepsilon}$ models with regard to turbulent normal stresses. Nevertheless, LRR and SSG models do not effectively predict pressure-strain redistribution terms in the inner layer because the pressure-strain terms are based on the locally homogeneous approximation. Therefore, to give better predictions of the pressure-strain terms, non-local effects should be considered.

  • PDF

ANALYSIS OF RAYLEIGH-BENARD NATURAL CONVECTION (Rayleigh-Benard 자연대류 유동 해석)

  • Choi, Seok-Ki;Kim, Seong-O
    • Journal of computational fluids engineering
    • /
    • v.13 no.3
    • /
    • pp.62-68
    • /
    • 2008
  • This paper reports briefly on the computational results of a turbulent Rayleigh-Benard convection with the elliptic-blending second-moment closure (EBM). The primary emphasis of the study is placed on an investigation of accuracy and numerical stability of the elliptic-blending second-moment closure for the turbulent Rayleigh-Benard convection. The turbulent heat fluxes in this study are treated by the algebraic flux model with the temperature variance and molecular dissipation rate of turbulent heat flux. The model is applied to the prediction of the turbulent Rayleigh-Benard convection for Rayleigh numbers ranging from Ra=$2{\times}10^6$ to Ra=$10^9$ and the computed results are compared with the previous experimental correlations, T-RANS and LES results. The predicted cell-averaged Nusselt number follows the correlation by Peng et al.(2006) (Nu=$0.162Ra^{0.286}$) in the 'soft' convective turbulence region ($2{\times}10^6{\leq}Ra{\leq}4{\times}10^7$) and it follows the experimental correlation by Niemela et al. (2000) (N=$0.124Ra^{0.309}$) in the 'hard' convective turbulence region ($10^8{\leq}Ra{\leq}10^9$) within 5% accuracy. This results show that the elliptic-blending second-moment closure with an algebraic flux model predicts very accurately the Rayleigh-Benard convection.

Numerical Simulation of Turbulent Wake Behind SUBOFF Model (SUBOFF 모형 후방 난류항적의 수치 시뮬레이션)

  • Nah, Young-In;Bang, Hyung-Do;Park, Jong-Chun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.47 no.4
    • /
    • pp.517-524
    • /
    • 2010
  • This paper covers the numerical studies performed to investigate the characteristics of turbulent wake generated by a submarine, SUBOFF model. A SUBOFF model assumed as an axial-symmetric body was used to generate wake. The numerical simulation was performed by using a commercial S/W, FLUENT, with the same condition as the experiments by Shin et al.(2009). Mainly the cross-sectional distribution of the time-averaged mean wake and turbulent kinetic energy was compared with the experiments. Both results are agreed well with each other in the propeller wake section, but the agreement between both is not so satisfied in the far wake field. It means that more numerous number of grid points and their concentration should be required in that field.

A numerical study on the effects of swirl on turbulent combustion in a constant volume bomb (스월이 정적연소실의 난류연소에 미치는 영향에 관한 수치해석)

  • 정진은;김응서
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.13 no.1
    • /
    • pp.66-74
    • /
    • 1991
  • A multidimensional numerical simulation of turbulent combustion in a constant volume bomb is implemented to clarify the effects of swirl on combustion. This simulation includes the ICED-ALE numerical technique, the skew-upwind differencing scheme, the modified .Kappa.-.epsilon. turbulence model, and the combustion model of the Arrhenius type and the turbulence-mixing-control type. The calculations of the turbulent combustion with swirl are carried out. It shows that the results agree with the measurements allowably. Therefore, the effects of swirl on turbulent combustion are examined through the parametric study of swirl.

  • PDF