• 제목/요약/키워드: Turbulent Heat Transfer

검색결과 509건 처리시간 0.021초

Enhancement of Turbulent Heat Transfer of the Cooling System in Nuclear Reactor by Large Scale Vortex Generation

  • Chun, Kun-Ho;Park, Jong-Seok;Choi, Young-Don
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • 제9권2호
    • /
    • pp.77-84
    • /
    • 2001
  • Experimental and computational studies were carried out to investigate the turbulent heat transfer enhancement of the cooling system in nuclear reactor by large scale vortex generation. The large scale vortex motion was generated by rearranging the inclination angels of mixing vanes to the coordinate direction. Axial development of mean and turbulent velocities in the subchannels were measured by the 2-color LDV system. Eddy diffusivity concept based on $\kappa{-}\varepsilon$ model was employed to calculate the turbulent heat and momentum transfers in the subchannel. The turbulences generated by split mixing vanes has small length scales so that they maintain only about $10D_H$ after the spacer grid. On the other hand, the turbulences generated by the large scale vortex motions continue longer and remain up to $25D_H$ after the spacer grid.

  • PDF

입구유동 가진이 있는 충돌제트 유동의 유동 및 열전달 변화에 대한 난류모델 적용 (Application of turbulent model to characteristics of heat transfer in impinging jet flow with pulsed inlet)

  • 권동호;김희영;박태선
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2008년도 춘계학술대회논문집
    • /
    • pp.593-596
    • /
    • 2008
  • Because of good performance of heat transfer characteristics, impinging jets are widely used in many industries for cooling or heating. And the present num erical studies attempt to show the effects of impinging jet. This paper considers the application of the turbulent models to impinging jet flow with pulsed inlet. It is assumed two-dimensional turbulent flows. The jet Reynolds num ber is set at 23,000 and the distance from the exit of the nozzle to the plate is 3 times larger than the diam eter of the nozzle. The influence of the Strouhal num ber(pulsation frequency) on Nusselt number at the impinging region is investigated. Strouhal numbers are ranged 0.0 to 0.5 and the forcing amplitudes are 1%,5%,9% of mean inlet velocity. In this study, the Nusselt number at the impinging region is sensitive to the pulsation frequency. Heat transfer coefficient strongly increase at Strouhal num ber of 0.4.

  • PDF

난류열전달 증진을 위한 딤플형상의 최적설계 (Design Optimization of Dimple Shape to Enhance Turbulent Heat Transfer)

  • 최지용;김광용
    • 대한기계학회논문집B
    • /
    • 제30권7호
    • /
    • pp.700-706
    • /
    • 2006
  • This study presents a numerical procedure to optimize the shape of dimple surface to enhance turbulent heat transfer in a rectangular channel. The response surface based optimization method is used as an optimization technique with Reynolds-averaged Wavier-Stokes analysis of fluid flow and heat transfer with shear stress transport (SST) turbulence model. The dimple depth-to-dimple print diameter ratio, channel height-to-dimple print diameter ratio, and dimple print diameter-to-pitch ratio are chosen as design variables. The objective function is defined as a linear combination of heat transfer related term and friction loss related term with a weighting factor. full factorial method is used to determine the training points as a mean of design of experiment. The optimum shape shows remarkable performance in comparison with a reference shape.

Shape Optimization of A Surface Roughened by Staggered Ribs To Enhance Turbulent Heat Transfer

  • Kim Hong-Min;Kim Kwang-Yong
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2003년도 The Fifth Asian Computational Fluid Dynamics Conference
    • /
    • pp.237-239
    • /
    • 2003
  • The present study investigates on design optimization of rib-roughened two-dimensional channel to enhance turbulent heat transfer. Response surface method with Reynolds-averaged Navier-Stokes analysis is used as an optimization technique. Standard $k-{\varepsilon}$model with wall functions is adopted as a turbulence closure. The objective function is defined as a linear combination of heat transfer and friction drag coefficients with weighting factor. Computational results for overall heat transfer rate show good agreements with experimental data. Four design variables are optimized for weighting factor of 0.02.

  • PDF

사각형 거칠기가 있는 동심 이중관내의 완전히 발달된 난류유동과 열전달 (Fully Developed Turbulent Flow and Heat Transfer in Concentric Annuli with Square-Ribbed Roughness)

  • 안수환;김경천;이윤표
    • 대한기계학회논문집
    • /
    • 제18권4호
    • /
    • pp.1072-1080
    • /
    • 1994
  • The fully developed turbulent momentum and heat transfer induced by the square-ribed roughness elements on the outer wall surface in concentric annuli are studied analytically based on a modified turbulence model. The analytical results of the fluid flow are verified by experiment. The resulting momentum and heat transfer are discussed in terms of various parameters, such as the radius ratio, the relative roughness, the roughness density, Reynolds number, Nusselt number and Prandtl number. The study demonstrates that certain artificial roughness elements may be used to enhance heat transfer rates with advantages from the overall efficiency point of view.

열전달성능 향상을 위한 엇갈린 딤플 유로의 최적설계 (DESIGN OPTIMIZATION OF A STAGGERED DIMPLED CHANNEL TO ENHANCE TURBULENT HEAT TRANSFER)

  • 신동윤;김광용
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2007년도 춘계 학술대회논문집
    • /
    • pp.159-162
    • /
    • 2007
  • This study presents a numerical procedure to optimize the shape of a staggered dimpled surface to enhance the turbulent heat transfer in a rectangular channel. A optimization technique based on neural network is used with Reynolds-averaged Navier-Stakes analysis of the fluid flow and heat transfer with Shear Stress Transport turbulence model. The dimple depth-to-dimple print diameter ratio, channel height-to-dimple print diameter ratio, and dimple print diameter-to-pitch ratio are chosen as design variables. The objective function is defined as a linear combination of terms related to heat transfer and friction loss with a weighting factor. Latin Hypercube Sampling is used to determine the training points as a mean of the Design of Experiment. Optimal values of the design variables were obtained in a range of the weighting factor.

  • PDF

난류 대류를 도입한 고온 축열 시스템 모델의 열복사 전달에 관한 연구 (Combined Thermal Radiation with Turbulent Convection Conjugate PCM Model)

  • 김광선
    • 설비공학논문집
    • /
    • 제7권4호
    • /
    • pp.556-565
    • /
    • 1995
  • The physical model of interest is based upon the concentric cylinder, where the outside cylinder is filled with optically thick and high temperature phase change material(PCM). The fluid is flowing through the inside cylinder to transfer the appropriate energy. The fluid is flowing through the inside cylinder to transfer the appropriate energy. The governing equations for the phase change material including internal thermal radiation and for the turbulent transfer fluid have been employed and numerically solved. The optically thick phase change justifies the P-l spherical harmonics approximation, which is believed to be appropriate choice particularly for the much coupled problem like in this study. The solid/liquid interface, temperature distribution within the PCM and the heat flux from the PCM to the transfer fluid have been obtained and compared with those of laminar transfer fluid. The numerical results show that the turbulent transfer fluid accelerates the solid/liquid interface and results in the increase of heat transfer rate from the PCM. The internal thermal radiation within the PCM, however, does not always playa role to increase the heat transfer rate throughout the inside cylinder. It is believed that the combined heat flux has been picked up more in the inflowing area than in the pure conductive phase change material.

  • PDF

국소교란에 의한 박리 재부착 유동에서의 난류 열전달 수치해석 (Numerical Simulation of Turbulent Heat Transfer in Locally-Forced Separated and Reattaching Flow)

  • 리광훈;성형진
    • 대한기계학회논문집B
    • /
    • 제25권1호
    • /
    • pp.87-95
    • /
    • 2001
  • A numerical study was made of heat transfer in locally-forced turbulent separated and reattaching flow over a backward-facing step. The local forcing was given to the flow by means of sinusoidally oscillating jet from a separation line. A Rhee and Sung version of the unsteady $\kappa$-$\varepsilon$-f(sub)u model and the diffusivity tensor heat transfer model were employed. The Reynolds number was fixed at Re(sub)H=33,000 and the forcing frequency was varied in the range 0$\leq$fH/U(sub)$\infty$$\leq$2. The condition of constant heat flux was imposed at the bottom wall. The predicted results were compared and validated with the experimental data of Chun and Sung and Vogel and Eaton. The enhancement of heat transfer in turbulent separated and reattaching flow by local forcing was evaluated and analyzed.

원관내 맥동난류유동에서의 열전달 수치해석 (Numerical Analysis of Heat Transfer in Pulsating Turbulent Pipe Flow)

  • 박희용;이관수;김창기
    • 대한기계학회논문집
    • /
    • 제14권5호
    • /
    • pp.1282-1289
    • /
    • 1990
  • 본 연구에서는 원관내에서 동적으로 완전히 발달한 난류맥동유동에서 관벽에 서 균일한 열유속이 주어지는 경우에 대하여 난류모델로서 K-.epsilon. 2방정식 모델을 적용 하여 수학적인 모델을 세운 후 이를 수치적으로 해석하였다. 그 결과 시간평균 레이 놀즈수가 10000인 경우에 대하여 Strouhal수가 0.0005에서 0.05 그리고 맥동속도진폭 이 0.8이하인 맥동류에 대한 열전달 특성을 제시하였다.

차폐막이 있는 밀폐공간 내에서의 난류 자연대류 - 복사열전달에 관한 연구 (A Study on the Turbulent Natural Convection - Radiative Heat Transfer In a Partitioned Enclosure)

  • 박경우;이주형;박희용
    • 대한기계학회논문집
    • /
    • 제18권10호
    • /
    • pp.2738-2750
    • /
    • 1994
  • The Effects of radiative heat transfer on turbulent flow in a partitioned enclosure is studied numerically. The enclosure is partially divided by a thin, poorly conducting vertical divider projecting from the ceiling of the enclosure. The low Reynolds number $k-{\epsilon}$ model is adopted to calculate the turbulent flow field. The solutions to the radiative transfer equations are obtained by the discrete ordinates method(DOM). This method is based on control volume method and is compatible with the SIMPLER algorithm used to solve the momentum and energy equations. The effects of optical thickness and Planck number on the flow, temperature fields and heat transfer rates are investigated for a moderate Rayleigh number($=10^9$). The changes in buoyant flow fields and temperature distributions due to the variation of baffle length are also analyzed. From the predictions, radiant heat exchange between the baffle and the sidewalls strongly influences the temperature distribution in the baffle and its vicinity and total heat transfer increases as the optical thickness and the baffle length decrease. It is possible to neglect the radiative heat transfer effect when Planck number is over one.