• Title/Summary/Keyword: Turbulent Flow Field Numerical Analysis

Search Result 127, Processing Time 0.029 seconds

A Numerical Analysis for Two-phase Turbulent Flow in the Neutral Atmosphere (중립 대기 상태에서 이상 난류유동에 관한 수치적 연구)

  • Kang, Seung-Kyu;Yoon, Joon-Yong;Lee, Do-Hyung
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.6
    • /
    • pp.772-778
    • /
    • 2002
  • A numerical analysis of turbulent gas-particle two-phase flow is performed in conjunction with the experiments of Fackrell & Robins and Raupach & Legg that considered ground-level source and/or elevated source flat plate flow. K-$\omega$ turbulence model is used in order to analyze fully turbulent flow field and the concentration equation with settling velocity is adopted for the concentration field. The model of Einstein and Chien is applied that couples the velocity field and the concentration field. Turbulent eddy viscosity is re-evaluated in this model. The present numerical results have good agreement between the simulation and the experimental data for the mean flow velocities and particle concentrations. While the previous study shows about 27% error in the vicinity of the source of particle concentration, the .present study allows about 14% error. A new turbulent gas-particle flow model developed by this study is able to cut down error by 13% at a near source.

Numerical Analysis on the Turbulent Mixing Flow Field of $45^{\circ}$ Impinging Round Jet ($45^{\circ}$ 원형충돌분류의 난류혼합유동장에 대한 수치해석)

  • Kim, J.K.;Oh, S.H.
    • Journal of Power System Engineering
    • /
    • v.15 no.3
    • /
    • pp.38-45
    • /
    • 2011
  • The computational flow numerical analysis was introduced to predict thc turbulent characteristics in the mixing flow structure of $45^{\circ}$ impinging round jet. This analysis has been carried out through the commercial fluent software. Realizable(RLZ) k-${\varepsilon}$ was used as a turbulent model. It can be known that mean velocities analysed through RLZ k-${\varepsilon}$ turbulent model comparatively predict well the experiments and show well the elliptic shape of mixing flow structure in the Y-Z plane, but analysed turbulent kinetic energies show somewhat differently from the experiments in certain regions.

Numerical Analysis of Three-Dimensional Flow in a Forward Curved Centrifugal Fan (전향 원심 송풍기의 3차원 유동에 대한 수치해석)

  • Yoon, Joon-Yong;Maeng, Joo-Sung;Byun, Sung-Joon;Lee, Sang-Hwan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.7
    • /
    • pp.916-923
    • /
    • 2000
  • Numerical study of three-dimensional turbulent flow in a forward curved centrifugal fan is presented. Standard $k-{\varepsilon}$ turbulence model and non-orthogonal curvilinear coordinates arc used to consider the turbulent flow field and complex geometry. Finite Volume approach is adopted for discretization scheme and structured grid system is used to help convergence. Multiblock grid system is used for flow field and divided into five domains that are inlet, outlet, impeller, tip clearance and scroll. It is assumed that the flow field is steady and incompressible. These numerical results are compared with the experimental data inside a rotor and at the fan outlet. Most important flow features are captured through this numerical approach. Finally details of flow field inside a fan are described and analyzed.

A Numerical Analysis of Turbulent Flow Field and Contamination Particles Movements in Rectangular Chambers (장방형 공간내 난류유동및 오염물질 거동의 수치해석)

  • Shim, W.S.;Song, K.C.;Hwang, T.Y.;Shin, Y.C.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.3 no.5
    • /
    • pp.350-364
    • /
    • 1991
  • The movements of small particles distributed uniformly in a steady flow in rectangular chambers having inlets and outlets were simulated numerically. Low Reynolds number turbulent model with a two-equation ($k-{\varepsilon}$) which describes the turbulent characteristics was applied to predict the air flow pattern and particles movements under the condition of the various locations and size of ducts. The calculation results show that the prediction of recirculation zone and stagnation point of flow is important to determine the particles behavior according to the design change. These results will be useful in designing the rectangular chambers for collective protection.

  • PDF

Numerical Analysis of Deep Seawater Flow Disturbance Characteristics Near the Manganese Nodule Mining Device (망간단괴 집광기 주위 해수 유동교란 수치해석)

  • Lim, Sung-Jin;Chae, Yong-Bae;Jeong, Shin-Taek;Cho, Hong-Yeon;Lee, Sang-Ho
    • Ocean and Polar Research
    • /
    • v.36 no.4
    • /
    • pp.475-485
    • /
    • 2014
  • Seawater flow characteristics around a manganese nodule mining device in deep sea were analyzed through numerical investigation. The mining device influences the seawater flow field with complicated velocity distributions, and they are largely dependent on the seawater flow speed, device moving speed, and injection velocity from the collecting part. The flow velocity and turbulent kinetic energy distributions are compared at several positions from the device rear, side, and top, and it is possible to predict the distance from which the mining device affects the seawater flow field through the variation of turbulent kinetic energy. With the operation of the collecting device the turbulent kinetic energy remarkably increases, and it gradually decreases along the seawater flow direction. Turbulent kinetic energy behind the mining system increases with the seawater flow velocity. The transient behavior of nodule particles, which are not collected, is also predicted. This study will be helpful in creating an optimal design for a manganese nodule collecting device that can operate efficiently and which is eco-friendly.

A Study on Prediction of Collection Efficiency of Electrostatic Precipitator Using Eulerian Numerical Analysis (오일러리안 수치해석법을 이용한 전기집진기의 집진효율 예측에 관한 연구)

  • Park, Jeong-Ho;Chun, Chung-Hwan
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.618-623
    • /
    • 2001
  • The transport of charged particles in electrostatic precipitator is investigated by Eulerian numerical analysis. Collection efficiencies are calculated using various combinations of the assumptions about flow field, turbulent diffusivity and boundary condition at collecting electrode. The characteristics of calculated collection efficiencies are compared with the trends of published experimental results. It is found that the collection efficiency for the case using nonuniform turbulent flow field, nonuniform turbulent diffusivity and zero concentration boundary condition at collecting electrode is the most suitable for the prediction of collection efficiency of electrostatic precipitator.

  • PDF

Numerical Analysis of Fully Developed Turbulent Recirculating Flow and Heat Transfer for The Periodic Variations of Cross Sectional Area (周期的으로 斷面이 變化하는 完全確立된 亂流再循環 流動과 亂流熱傳達의 數値分析)

  • 이병곤;최영돈
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.10 no.1
    • /
    • pp.138-149
    • /
    • 1986
  • A numerical method is developed for the solution of fully developed turbulent recirculating flow whose cross-sectional area varies periodically. This enalbes the flow field analysis to be confined to a single isolated module, without involvement with the entrance region problem. This method are applied to the analysis of the turbulent flow field and heat transfer in artificially roughened annulus with repeated square rib.

Numerical Analysis of Three-Dimensional Flow in a Forward Curved Centrifugal Fan (전향 원심 송풍기의 3 차원 유동에 대한 수치해석)

  • Yun Jun Yong;Maeng Ju Seong;Byeon Seong Jun
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1998.05a
    • /
    • pp.174-180
    • /
    • 1998
  • Numerical study of three-dimensional turbulent flow in a forward curved centrifugal fan is presented. Standard $k-{\varepsilon}$ turbulence model and non-orthogonal curvilinear coordinates are used to consider the turbulent flow field and complex geometry. Finite Volume approach is adopted for discretization scheme and structured grid system is used to help convergence. Multiblock grid system is used for flow field and divided into five domains that are inlet, outlet, impeller, tip clearance and scroll. It is assumed that the flow field is steady state and incompressible. This numerical work is performed with commercial CFD-ACE code developed by CFD Research Corporation, and the results are compared wi th the experimental data

  • PDF

A Numerical Study on Two-Dimensional Turbulent Flow Field Around a Building (건물주위의 이차원 난류류동장에 대한 수치적 해석)

  • Won Sung Pil;Lee Dong Hwan
    • The Magazine of the Society of Air-Conditioning and Refrigerating Engineers of Korea
    • /
    • v.16 no.2
    • /
    • pp.166-175
    • /
    • 1987
  • The heat loss of a building within a wind flow field results from convection and natural ventilation. Loss from natural ventilation is much more than one from convection, and the former depends mostly on the pressure distribution at the building surface. Therefore, the objective of the present study is to calculate the pressure distribution and investigate flow phenomena, around the building with a rectangular shape in a two-dimensional turbulent flow field. The finite difference method, modelled upon the turbulence $k-\epsilon$ model, has been applied to the analysis. The results, followed by the changes of Reynolds numbers, inlet flow conditions, and building shapes, have been also obtained, respectively. Various results of the present numerical analysis coincide qualitatively well with earlier reported empirical results.

  • PDF

Numerical study on flows within an shrouded centrifugal impeller passage (원심회전차 내부유도장에 관한 수치해석적 연구)

  • Kim, Seong-Won;Jo, Gang-Rae
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.10
    • /
    • pp.3272-3281
    • /
    • 1996
  • The flow analysis method which had been developed for the numerical calculation of 3-dimensional, incompressible and turbulent flow within an axial compressor was extended to the flow field within centrifugal impeller. In this method based on the SIMPLE(Semi Implicit Method Pressure Linked Equations) algorithm, the coordinate transformation was adopted and the standard k-.epsilon. model using wall function was used for turbulent flow analysis. The calculated flow fields have agreed very well with measurement results. Especially, 3-dimensional and viscous flow characteristics including secondary flows, jet-wake flow and decreased pressure rise along impeller passage, which can't be predicted by inviscid Q3D calculation were predicted very reasonably.