• Title/Summary/Keyword: Turbulent Flame Speed

Search Result 50, Processing Time 0.025 seconds

A study on the influence of turbulence characteristics on burning speed in swirl flow field (스월유동장에 있어서 연소속도에 미치는 난류특성의 영향에 관한 연구)

  • Lee, Sang Jun;Lee, Jong-Tai;Lee, Song-Yol
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.1
    • /
    • pp.244-254
    • /
    • 1996
  • Flow velocity was measured by, use of hot wire anemometer. Turbulence intensity was in proportion to mean flow velocity regardless of swirl velocity. And integral length scale has proportional relation with swirl velocity regardless of measurement position. Turbulent burning speed during flame propagation which was determined by flame photograph and gas pressure of combustion chamber was increased with the lapse of time from spark and was decreased a little at later combustion period. Because of combustion promotion effect, turbulent burning speed was increased according to increase of turbulence intensity. Burning speed ratio i.e. ratio of turbulent burning speed ($S_BT$) to laminar burning speed ($S_BL$) was found out by use of turbulence intensity u' and integral length scale $l_x$ , $\delta_L$ is width of preheat zone in laminar flame.

Flame Hole Dynamics Model of a Diffusion Flame in Turbulent Mixing Layer (난류 혼합층에서 확산화염에 대한 flame hole dynamics 모델)

  • Kim, Jun-Hong;Chung, S.H.;Ahn, K.Y.;Kim, J.S.
    • Journal of the Korean Society of Combustion
    • /
    • v.8 no.3
    • /
    • pp.15-23
    • /
    • 2003
  • Partial quenching structure of turbulent diffusion flames in a turbulent mixing layer is investigated by the method of flame hole dynamics in order to develop a prediction model for turbulent flame lift off. The essence of flame hole dynamics is derivation of the random walk mapping, from the flame-edge theory, which governs expansion or contraction of flame holes initially created by local quenching events. The numerical simulation for flame hole dynamics is carried out in two stages. First, a direct numerical simulation is performed for constant-density fuel-air channel mixing layer to obtain the turbulent flow and mixing fields, from which a time series of two dimensional scalar dissipation rate array is extracted at a fixed virtual flame surface horizontally extending from the end of split plate to the downstream. Then, the Lagrangian simulation of the flame hole random walk mapping projected to the scalar dissipation rate array yields temporally evolving turbulent extinction process and its statistics on partial quenching characteristics. The statistical results exhibit that the chance of partial quenching is strongly influenced by the crossover scalar dissipation rate while almost unaffected by the iteration number of the mapping that can be regarded as a flame-edge speed.

  • PDF

Validation of an asymptotic zone conditional expression for turbulent burning velocity against DNS database (영역조건평균에 기초한 난류연소속도의 직접수치해법검증)

  • Kim, Soo-Youb;Huh, Kang-Y.
    • Journal of the Korean Society of Combustion
    • /
    • v.9 no.4
    • /
    • pp.1-8
    • /
    • 2004
  • Zone conditional formulation for the Reynolds average reaction progress variable is used to derive an asymptotic expression for turbulent burning velocity. New DNS runs are performed for validation in a statistically one dimensional steady state configuration. Parametric study is performed with respect to turbulent intensity, integral length scale, density ratio and laminar flame speed. Results show good agreement between DNS results and the asymptotic expression in terms of measured maximum flame surface density and estimated turbulent diffusivity in unburned gas.

  • PDF

Validation of an asymptotic zone conditional expression for turbulent burning velocity against DNS database (영역조건평균에 기초한 난류연소속도의 직접수치해법검증)

  • Kim, Soo-Youb;Huh, Kang-Y.
    • 한국연소학회:학술대회논문집
    • /
    • 2004.11a
    • /
    • pp.62-69
    • /
    • 2004
  • Zone conditional formulations for the Reynolds average reaction progress variable are used to derive an asymptotic expression for turbulent burning velocity. New DNS runs are performed for validation in a statistically one dimensional steady state configuration. Parametric study is performed with respect to turbulent intensity, integral length scale, density ratio and laminar flame speed. Results show good agreement between DNS results and the asymptotic expression in terms of measured maximum flame surface density and estimated turbulent diffusivity in unburned gas.

  • PDF

Large eddy simulation of turbulent premixed flame with dynamic sub-grid scale G-equation model in turbulent channel flow (Dynamic Sub-grid Scale G-방정식 모델에 의한 평행평판간 난류의 예 혼합 연소에 관한 대 와동 모사)

  • Ko Sang-Cheol;Park Nam-Seob
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.29 no.8
    • /
    • pp.849-854
    • /
    • 2005
  • The laminar flame concept in turbulent reacting flow is considered applicable to many practical combustion systems For turbulent premixed combustion under widely used flamelet concept, the flame surface is described as an infinitely thin propagating surface that such a Propagating front can be represented as a level contour of a continuous function G. In this study, for the Purpose of validating the LES of G-equation combustion model. LES of turbulent Premixed combustion with dynamic SGS model of G-equation in turbulent channel flow are carried out A constant density assumption is used. The Predicted flame propagating speed is goof agreement with the DNS result of G. Bruneaux et al.

Statistical Characteristics of Fractal Dimension in Turbulent Prefixed Flame (난류 예혼합 화염에서의 프랙탈 차원의 통계적 특성)

  • Lee, Dae-Hun;Gwon, Se-Jin
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.1
    • /
    • pp.18-26
    • /
    • 2002
  • With the introduction of Fractal notation, various fields of engineering adopted fractal notation to express characteristics of geometry involved and one of the most frequently applied areas was turbulence. With research on turbulence regarding the surface as fractal geometry, attempts to analyze turbulent premised flame as fractal geometry also attracted attention as a tool for modeling, for the flame surface can be viewed as fractal geometry. Experiments focused on disclosure of flame characteristics by measuring fractal parameters were done by researchers. But robust principle or theory can't be extracted. Only reported modeling efforts using fractal dimension is flame speed model by Gouldin. This model gives good predictions of flame speed in unstrained case but not in highly strained flame condition. In this research, approaches regarding fractal dimension of flame as one representative value is pointed out as a reason for the absence of robust model. And as an extort to establish robust modeling, Presents methods treating fractal dimension as statistical variable. From this approach flame characteristics reported by experiments such as Da effect on flame structure can be seen quantitatively and shows possibility of flame modeling using fractal parameters with statistical method. From this result more quantitative model can be derived.

Simulation of Turbulent Premixed Flame Propagation in a Closed Vessel (정적 연소실내 난류 예혼합화염 전파의 시뮬레이션)

  • 권세진
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.6
    • /
    • pp.1510-1517
    • /
    • 1995
  • A theoretical method is described to simulate the propagation of turbulent premixed flames in a closed vessel. The objective is to develop and test an efficient technique to predict the propagation speed of flame as well as the geometric structure of the flame surfaces. Flame is advected by the statistically generated turbulent flow field and propagates as a wave by solving twodimensional Hamilton-Jacobi equation. In the simulation of the unburned gas flow field, following turbulence properties were satisfied: mean velocity field, turbulence intensities, spatial and temporal correlations of velocity fluctuations. It is assumed that these properties are not affected by the expansion of the burned gas region. Predictions were compared with existing experimental data for flames propagating in a closed vessel charged with hydrogen/air mixture with various turbulence intensities and Reynolds numbers. Comparisons were made in flame radius growth rate, rms flame radius fluctuations, and average perimeter and fractal dimensions of the flame boundaries. Two dimensional time dependent simulation resulted in correct trends of the measured flame data. The reasonable behavior and high efficiency proves the usefulness of this method in difficult problems of flame propagation such as in internal combustion engines.

A Study on the Structure of Premixed Turbulent Propagating Flames Using a Microprobe Method (정전탐침법에 의한 예혼합 난류전파화염의 구조에 관한 연구)

  • Kim, J.H.;Ahn, S.K.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.3 no.6
    • /
    • pp.78-86
    • /
    • 1995
  • The structure of premixed turbulent flames in a constant-volume vessel was investigated using a microprobe method. The flame potential signal having one to eight peaks was detected in the case of turbulent flames, each of them being regarded as a flamelet existing in the flame zone. Based on this consideration, the flame propagation speed, the thickness of the flame zone, the number of flamelets and the separation distance between adjacent flamelets in the flame zone were measured. The experimental resuits of this work suggest the existence of "reactant islands" behind the flame front when the turbulence was intensified to some extent. The critical(lowest) ratio of turbulence intensity to the laminar burning velocity being found to be about 0.7 for the formation of reactant islands in this experiment.

  • PDF

Simultaneous Measurements of CH-OH PLIF and Stereoscopic PIV in Turbulent Premixed Flames (CH-OH PLIF와 Stereoscopic PIV동시계측에 의한 난류예혼합화염의 관찰)

  • Choi, Gyung-Min;Tanahashi, Mamoru;Miyauchi, Toshio
    • 한국연소학회:학술대회논문집
    • /
    • 2004.11a
    • /
    • pp.91-96
    • /
    • 2004
  • Simultaneous CH and OH planar laser induced fluorescence(PLIF) and stereoscopic particle image velocimetry (PIV) measurements have been developed to investigate the local flame structure of turbulent premixed flames. The developed simultaneous two radical concentrations and three component velocity measurements on a two-dimensional plane was applied for relatively high Reynolds number turbulent premixed flames in a swirl stabilized combustor. All measurements were conducted for methane-air premixed flames in the corrugated flamelets regime. Strong three-dimensional fluctuation implies that misunderstanding of the flame/turbulent interactions would be caused by the analysis of two-component velocity distribution in a cross section. Furthermore, comparisons of CH-OH PLIF and three-component velocity field show that the burned gases not always have high-speed velocity in relatively high Reynolds number turbulent premixed flame. The Reynolds number dependence of the flame front was clearly captured by the simultaneous CH-OH PLIF and stereoscopic PIV measurements.

  • PDF

Simultaneous Measurement of CH-OH PLIF and Stereoscopic PIV in Turbulent Premixed Flames (CH-OH PLIF와 Stereoscopic PIV계측법을 이용한 난류예혼합화염의 관찰)

  • Choi Gyung-Min;Tanahashi Mamoru;Miyauchi Toshio.
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2004.11a
    • /
    • pp.102-103
    • /
    • 2004
  • Simultaneous CH and OH planar laser induced fluorescence(PLIF) and stereoscopic particle image velocimetry(PIV) measurements have been developed to investigate the local flame structure of turbulent premixed flames. The developed simultaneous two radical concentrations and three component velocity measurements on a two-dimensional plane was applied for relatively high Renolds number turbulent premixed flames in a swirl stabilized combustor. All measurements were conducted for methane-air premixed flames in the corrugated flamelets regime. Strong three-dimensional fluctuation implies that misunderstanding of the flame/turbulent interactions would be caused by the analysis of two-component velocity distribution in a cross section. Furthermore, comparisons of CH-OH PLIF and three-component velocity field show that the burned gases not always have high-speed velocity in relatively high Renolds number turbulent premixed flame.

  • PDF