• Title/Summary/Keyword: Turbulent Convection

Search Result 153, Processing Time 0.017 seconds

Analysis of Conjugated Heat Transfer for the Diffuser Exposed to Hot Combustion Gas (고온 연소가스에 노출되는 디퓨저의 복합 열전달량 계산)

  • Jin, Sang-Wook;Na, Jae-Jung;Rhe, Sang-Ho;Lee, Kyu-Jun;Lim, Jin-Shik;Kim, Sung-Don
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.231-234
    • /
    • 2010
  • Analysis of conjugated heat transfer has been conducted for the diffuser exposed to hot combustion gas to design the mechanical durability in high temperature. All the heat transfer means, conduction, convection and radiation have been considered to calculate the total heat flux from hot gas to diffuser surface. The calculation has been implemented by two kinds of methods. One thing is one dimensional method based on empirical equations. The other is CFD(Computational Fluid Dynamics) axisymmetric calculation containing ${\kappa}-{\omega}$ SST(Shear Stress Transport) turbulent model and DO(Discrete Ordinate) radiation model. The derived results of two methods have compared and showed similar values. From this result, the amount of cooling water and the dimension of water cooling channel were decided.

  • PDF

Effect of Process Gas and Burner Gas Temperature on Reaction and Thermal Deformation Characteristics in a Steam Reformer (증기 개질기의 반응 및 열변형 특성에 미치는 공정가스와 버너가스 온도의 영향)

  • Han, Jun Hee;Kim, Ji Yoon;Lee, Jung Hee;Lee, Seong Hyuk
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.9
    • /
    • pp.126-132
    • /
    • 2016
  • This study numerically investigates the characteristics of chemical reactions and thermal deformation in a steam reformer. These phenomena are significantly affected by the high-temperature burner gas and the process gas conditions. Because the high temperature of the burner gas ranges from 800 to 1000 K, the reformer tubes undergo substantial thermal deformation, eventually resulting in structural failure. Thus, it is necessary to understand the characteristics of the reaction and thermal deformation under the operating conditions to evaluate the reformer tubes for sustainable, stable operation. Extensive numerical simulations were carried out using commercial CFD code (ANSYS FLUENT/MECHANICA Ver. 13.0) while considering three-dimensional turbulent flows and combined heat transfer including conduction, convection, and radiation. Structural analysis considering conjugated heat transfer between solid tubes and fluid flows was conducted using the Fluid-Solid Interaction (FSI) method. The results show that when the injection temperature of the process gas and burner gas decreased, the hydrogen production rate decreased significantly, and thermal deformation decreased by at least 15 to 20%.

Simulation of Detailed Wind Flow over a Locally Heated Mountain Area Using a Computational Fluid Dynamics Model, CFD_NIMR_SNU - a fire case at Mt. Hwawang - (계산유체역학모형 CFD_NIMR_SNU를 이용한 국지적으로 가열된 산악지역의 상세 바람 흐름 모사 - 화왕산 산불 사례 -)

  • Koo, Hae-Jung;Choi, Young-Jean;Kim, Kyu-Rang;Byon, Jae-Young
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.11 no.4
    • /
    • pp.192-205
    • /
    • 2009
  • The unexpected wind over the Mt. Hwawang on 9 February 2009 was deadly when many spectators were watching a traditional event to burn dried grasses and the fire went out of control due to the wind. We analyzed the fatal wind based on wind flow simulations over a digitized complex terrain of the mountain with a localized heating area using a three dimensional computational fluid dynamics model, CFD_NIMR_SNU (Computational Fluid Dynamics_National Institute of Meteorological Research_Seoul National University). Three levels of fire intensity were simulated: no fire, $300^{\circ}C$ and $600^{\circ}C$ of surface temperature at the site on fire. The surface heat accelerated vertical wind speed by as much as $0.7\;m\;s^{-1}$ (for $300^{\circ}C$) and $1.1\;m\;s^{-1}$ (for $600^{\circ}C$) at the center of the fire. Turbulent kinetic energy was increased by the heat itself and by the increased mechanical force, which in turn was generated by the thermal convection. The heating together with the complex terrain and strong boundary wind induced the unexpected high wind conditions with turbulence at the mountain. The CFD_NIMR_SNU model provided valuable analysis data to understand the consequences of the fatal mountain fire. It is suggested that the place of fire was calm at the time of the fire setting due to the elevated terrain of the windward side. The suppression of wind was easily reversed when there was fire, which caused updraft of hot air by the fire and the strong boundary wind. The strong boundary wind in conjunction with the fire event caused the strong turbulence, resulting in many fire casualties. The model can be utilized in turbulence forecasting over a small area due to surface fire in conjunction with a mesoscale weather model to help fire prevention at the field.