• Title/Summary/Keyword: Turbulent Combustion

Search Result 525, Processing Time 0.027 seconds

Extinction of Non-premixed methane Flame in Twin-Jet Counterflow (Twin-Jet 대향류에서 메탄 비예혼합화염의 소염 특성)

  • Noh, T.G.;Yang, S.Y.;Ryu, S.K.;Chung, S.H.
    • 한국연소학회:학술대회논문집
    • /
    • 2003.12a
    • /
    • pp.195-200
    • /
    • 2003
  • A two-dimensional "twin-jet counterflow" burner has been designed for the better understanding of the stability of turbulent flames. This flow system enables one to systematically investigate various effects on non-premixed flames, including the effects of curvature, negative strain, and non-premixed flame interactions. The objective of this study is comparing characteristics of extinction of non-premixed methane flames with that of non-premixed propane flames investigated previously. The extinction limit of non-premixed methane and propane flames can be extended compare to that for the conventional counterflow non-premixed flame because of the existence of petal shaped flame and have same structure. The hysteresis in transition between the petal shaped flame and the curved two-wing flames could be observed. We could find differences between non-premixed methane flame and non-premixe propane flame such as the position of one wing extinction and the regime of one wing extinction.

  • PDF

Simultaneous PIV/OH PLIF Measurements in Hydrogen Nonpremixed Flames with Coaxial Air (PIV/OH PLIF 동시 측정을 이용한 동축공기 수소확산화염의 실험적 연구)

  • Kim, Mun-Ki;Kim, Seung-Han;Yoon, Young-Bin
    • 한국연소학회:학술대회논문집
    • /
    • 2003.12a
    • /
    • pp.115-123
    • /
    • 2003
  • Simultaneous measurements of velocity and OH distribution were made using particle image velocimetry(PIV) and planar laser-induced fluorescence(PLIF) of OH radical in turbulent hydrogen nonpremixed flames with coaxial air. The OH radical was used as an approximate indicator of chemical reaction zone. The OH layer was correlated well with the stoichiometric velocity, $U_s$, instantaneously and on average. In addition, high strain-rate regions almost coincide with the OH distribution. The residence time in flame surface, calculated from the root-mean-square value of the radial velocity, is proportional to $(x/d_F)^{0.7}$. It is found that the mean value of principal strain rate on the OH layer can be scaled with $(x/d_F)^{-0.7}$ and therefore, the product of the residence time and the mean strain rate remains constant over all axial positions.

  • PDF

Calculation of Stretched Laminar Diffusion Flame Using the Coherent Flame Sheet Model (코히어런트 화염면 모델을 이용한 스트레치 층류 확산 화염의 수치 계산)

  • 정진은;진영욱
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.1
    • /
    • pp.17-22
    • /
    • 2000
  • The transient process simplified by the 1-D stretched laminar flame formed at the fuel-oxidizer interface was investigated using the coherent flame sheet model. Under the combustion environment of high temperatures and pressures the results show that the time required to reach the steady state was relatively short compared to the reverse of strain rate. Hence the employment of the tabulation of precalculated steady-flame results in the calculation of turbulent diffusion flames using the coherent flame sheet model is concluded valid, Also upstream temperatures were found to have only a minor effect on the nondimensional flame temperature and nondimensional fuel even through the letter is sensitive to pressure changes.

  • PDF

Numerical Analysis for the Soot Formation Processes in Acetylene-Air Nonpremixed Turbulent Jet Flame (아세틸렌/공기 비예혼합 난류 제트화염의 Soot 생성에 대한 수치해석)

  • 김후중;김용모;윤명원
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.6
    • /
    • pp.80-89
    • /
    • 2002
  • The flame structure and soot formation in Acetylene-Air nonpremixed jet flame are numerically analyzed. We employed two variable approach to investigate the soot formation and oxidation processes. The present soot reaction mechanism involves nucleation, surface growth, particle coagulation, and oxidation steps. The gas phase chemistry and the soot nucleation, surface growth reactions are coupled by assuming that the nucleation and soot mass growth has the certain relationship with the concentration of pyrene and acetylene. We also employed laminar flamelet model to calculate the thermo-chemical properties and the proper soot source terms from the information of detailed chemical kinetic model. The numerical and physical model used in this study successfully predict the essential features of the combustion processes and soot formation characteristics in the reaction flow field.

A study on the heat transfer of the turbocharged gasoline engine (터보과급 가솔린기관의 열전달에 관한 연구)

  • 최영돈;홍진관
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.10 no.5
    • /
    • pp.69-82
    • /
    • 1988
  • Heat transfer experiment is carried out during the performance test of the 4-cylinder 4-stroke cycle turbo-charged gasoline engine. Cycle simulation employing the measured pressure in cylinder, the cooling water temperature and flow rate and others is carried out in order to calculate the gas temperature in cylinder. In this simulation combustion process was simulated by Annand's two zone model and suction, compression, and other processes are calculated completely. From this simulation, we can obtain not only the heat transfer coefficient but also the flame speed, turbulent burning velocity, flame factor and the boiling condition of cooling passage. The results are investigated with engine speed, equivalence ratio and spark advance.

  • PDF

An experimental study on the concentration distribution of helium and air mixture in the direct injection type engine (헬륨$\cdot$공기흡합기농도분포에 관한 실험적 연구)

  • 김봉곤;하종률;권순석
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.12 no.1
    • /
    • pp.33-39
    • /
    • 1990
  • This study has been conducted by experiments for distribution of concentration of helium gas, which is jetted into stationary atmosphere at the normal temperature and pressure. It is able to obtain the data for concentration of helium and air mixtures by the use of hot wire probe which has fast response. At an up stream, the concentration gradient which is attained is steep. At a down stream, the mixing time of helium and air is gradually shortened with the lapse of time in front of a jet. The arrival frequency of a jet in an unsteady area is mostly constant from 0% to 100% up to 80mm, but the time which is reaching to 100% is gradually to lengthen as a descending downstream. After starting a jet and the point of 90%, the mixing time is especially to lengthen. This reason comes from the turbulent intensity which causes for mixing of helium and air. This time difference which causes according to lengthen a jet should be considered in the design of combustion chamber.

  • PDF

A Study on the Kernel Formation & Development for Lean Burn and EGR Engine (희박연소 및 EGR 엔진에서 초기 화염액 생성 및 성장에 관한 연구)

  • 송정훈;선우명호
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.7 no.8
    • /
    • pp.24-33
    • /
    • 1999
  • This paper investigate the effects of the variations of engine operation condition in the flame kernel formation and developmnet . A model for calculating the initial kernel development in spark ignition engines is formualted. It considered input of electrical energy, combustion energy release and heat transfer to the spark plyg, cylinder head, and unburned mixture. The model also takes into accounts strain rate of initial kernel and residual gas fraction. The breakdown process and the subsequent electrical power input initially control the kernel growth while intermediate growth is mainly dominated by diffusion or conduction. Then, the flame propagates by the chemical energy and turbulent flame expansion. Flame kernel development also influenced by engine operating conditions, for example, EGR rate, air-fuel ration and intake manifold pressure.

  • PDF

Analysis of Gaseous Hydrogen/liquid Oxygen Combustion Processes at Supercritical State (초임계 압력에서 기체수소/액체산소의 연소과정 해석)

  • Kim, Tae-Hoon;Kim, Seong-Ku;Kim, Yong-Mo
    • Journal of ILASS-Korea
    • /
    • v.15 no.4
    • /
    • pp.189-194
    • /
    • 2010
  • This study has been mainly motivated to numerically model the transcritical mixing and reacting flow processes encountered in the liquid propellant rocket engines. In the present approach, turbulence is represented by the extended k-$\varepsilon$ turbulence model. To account for the real fluid effects, the propellant mixture properties are calculated by using SRK (Souve-Redlich-Kwong) equation of state model. In order to realistically represent the turbulence-chemistry interaction in the turbulent non-premixed flames, the flamelet approach based on the real fluid flamelet library has been adopted. Based on numerical results, the detailed discussions are made for the real fluid effects and the precise structure of the transcritical cryogenic liquid nitrogen jet and gaseous hydrogen/liquid oxygen coaxial jet flame.

Three Dimensional Numerical Analysis of the Walking Beam Type of a Hot Roll Reheat Furnace (Walking Beam형 열연 재가열로의 3차원 수치해석)

  • Kim J. K.;Huh G. Y.;Kim I. T.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1999.05a
    • /
    • pp.199-204
    • /
    • 1999
  • Three dimensional numerical analysis for the turbulent reactive flow and radiative heat transfer in the walking beam type of a reheat furnace in POSCO has been carried out by the industrial code FLUENT. Computations an based on the conservation equations of mass, momentum, energy and species with the $k-{\varepsilon}$ turbulence model and mixture fraction/PDF(Probability Density Function) approach for the combustion rate. Radiative heat transfer is computed by the discrete ordinates radiation model in combination with the weighted-sum-of-gray-gas model for the absorption coefficient of gas medium. The predicted temperture distribution in the reheat furnace and energy flow fractions are in reasonable agreement with the measurement data.

  • PDF

A Study on the Heat and Gas Flow for Fire Simulation in a Tunnel (화재시 터널내 열유동 시뮬레이션 모델 연구)

  • 우경범;김원갑;한화택
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.14 no.7
    • /
    • pp.584-591
    • /
    • 2002
  • The objective of the present study is to develop a model to predict heat and gas flow movement by fire in a tunnel. The model includes component models such as turbulence model, combustion model, fire model, jet fan model, etc. It has been validated using the data from Memorial Tunnel Fire Ventilation Test Program. The predictions are in good quantitative agreement with the experimental data in the far-field region of the tunnel. It should be further investigated to develop models for radiation between surfaces, for composite boundary conditions for conduction and convection, and for vigorous turbulent mixing in a tunnel especially for a large size of fire.