• Title/Summary/Keyword: Turbulent

Search Result 3,979, Processing Time 0.032 seconds

Numerical Modeling for Turbulent Premixed Flames (난류 예혼합 화염장에 대한 수치 모델링)

  • Kang, Sung-Mo;Kim, Yomg-Mo
    • 한국연소학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.198-203
    • /
    • 2005
  • The LES-based level-set flamelet model has been applied to analyze the turbulent propane/air premixed bluff-body flame with a highly wrinkled flame fronts. The present study has been motivated to investigate the interaction between the flame front and turbulent eddies. Special emphasis is given to study the effect of G equation filtering treatment on the precise structure of turbulent premixed flames as well as the effect of sub-grid scale (SGS) eddies on the wrinkling of the flame surface. The level-set/flamelet model has been adopted to account for the effect of turbulence-flame interaction as well as to properly capture the flame front. Numerical results indicate that the present LES-based level-set flamelet approach has a capability to realistically simulate the highly non-stationary turbulent premixed flame.

  • PDF

Liftoff mechanisms in hydrogen turbulent non-premixed jet flames (수소 난류확산화염에서의 부상 메커니즘에 대한 연구)

  • Oh, Jeong-Seog;Kim, Mun-ki;Choi, Yeong-Il;Yoon, Young-Bin
    • 한국연소학회:학술대회논문집
    • /
    • 2007.05a
    • /
    • pp.7-12
    • /
    • 2007
  • To reveal the newly found liftoff height behavior of hydrogen jet, we have experimentally studied the stabilization mechanism of turbulent, lifted jet flames in a non-premixed condition. The objectives of the present research are to report the phenomenon of a liftoff height decreasing as increasing fuel velocity, to analyse the flame structure and behavior of the lifted jet, and to explain the mechanisms of flame stability in hydrogen turbulent non-premixed jet flames. The velocity of hydrogen was varied from 100 to 300m/s and a coaxial air velocity was fixed at 16m/s with a coflow air less than 0.1m/s. For the simultaneous measurement of velocity field and reaction zone. PIV and OH PLIF technique was used with two Nd:Yag lasers and CCD cameras. As results, it has been found that the stabilization of lifted hydrogen diffusion flames is related with a turbulent intensity, which means that combustion occurs where the local flow velocity is valanced with the turbulent flame propagation velocity.

  • PDF

Friction Factor for Circular Pipe with Uniform Roughness (균일조도 원형관 마찰계수)

  • Yoo, Dong Hoon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.13 no.5
    • /
    • pp.165-172
    • /
    • 1993
  • On the basis of Nikuradse laboratory experiments conducted in circular pipe with uniform roughness, five flow regimes are defined with respect to the characteristics of boundary layer such as laminar, transition laminar, smooth turbulent, transition turbulent and rough turbulent flows. Two cases are found for the transition laminar flow: one for the transition between laminar flow and smooth turbulent flow and the other for the one between laminar flow and rough turbulent flow. They all can be clearly determined by the relative roughness or the ratio of pipe diameter to the roughness. Explicit functions are developed for the estimation of pipe friction factor for the various flow conditions including turbulent flow regimes, which have excellent agreement with the Nikuradse laboratory data.

  • PDF

Simultaneous Measurement of CH-OH PLIF and Stereoscopic PIV in Turbulent Premixed Flames (CH-OH PLIF와 Stereoscopic PIV계측법을 이용한 난류예혼합화염의 관찰)

  • Choi Gyung-Min;Tanahashi Mamoru;Miyauchi Toshio.
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2004.11a
    • /
    • pp.102-103
    • /
    • 2004
  • Simultaneous CH and OH planar laser induced fluorescence(PLIF) and stereoscopic particle image velocimetry(PIV) measurements have been developed to investigate the local flame structure of turbulent premixed flames. The developed simultaneous two radical concentrations and three component velocity measurements on a two-dimensional plane was applied for relatively high Renolds number turbulent premixed flames in a swirl stabilized combustor. All measurements were conducted for methane-air premixed flames in the corrugated flamelets regime. Strong three-dimensional fluctuation implies that misunderstanding of the flame/turbulent interactions would be caused by the analysis of two-component velocity distribution in a cross section. Furthermore, comparisons of CH-OH PLIF and three-component velocity field show that the burned gases not always have high-speed velocity in relatively high Renolds number turbulent premixed flame.

  • PDF

Tensorial Time Scales for Turbulent Gradient Transport of Reynolds Stresses (레이놀즈 응력의 난류구배수송을 위한 텐서시간척도)

  • Cho Choong Won;Kim Kyoungyoun;Sung Hyung Jin;Chung Myung Kyoon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.6 s.237
    • /
    • pp.687-695
    • /
    • 2005
  • On the notion that the Reynolds stresses are transported with different time scale depending on the transport direction, the third order velocity correlations are represented by a new turbulent gradient transport model with tonsorial Lagrangian time scale. In order to verify the proposed model, DNS data are first obtained in a turbulent channel flow at Re = 180 and tonsorial Lagrangian time scales are computed. The present model predictions are compared with DNS data and those predicted by the third-order turbulent transport model of Hanjalic and Launder that uses a scalar time scale. The result demonstrates that the Reynolds stresses are indeed transported with different time scale depending on the transport direction.

Experimental Study on the Centerline Flow Characteristics of Jets (분사류의 중심선 유동특성에 관한 실험적 연구)

  • Kim, Dong-Sik
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.4 no.4
    • /
    • pp.387-393
    • /
    • 2001
  • The flow characteristics on the centerline in case of free jet, sudden expansion jet and impinging jet have been investigated. Centerline flow behaviors and similaritis with mean velocities, turbulent intensities, shear stresses, isotropic structures and turbulent kinetic energies on the streamwise direction were looked into and compared with three jets, The results show that mean velocities have represented potential core and decayed with similar gradients. The turbulent intensities and shear stresses were presented peak values in the self-preserving region, and then they were in decay. Aeolotropy in the initial region were possible returned to isotropy patterns with asymptotic approach in the downstream region. It has been found that the turbulent kinetic energies for the three cases of jet existed in the similarity and they coincided with Gaussian profile.

  • PDF

Effect of a Turbulent Wake on Two-Dimensional Subsonic Jet (노즐내 물체의 후류가 아음속 이차원 제트구조에 미치는 영향에 관한 연구)

  • Kim, Tae-Ho;Lee, Sang-Chan;Yoon, Bok-Hyun;Oh, Dae-Geun;Kim, Heuy-Dong
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.986-991
    • /
    • 2003
  • A turbulent wake generated by a cylinder in nozzle contraction affects to the jet flow characteristics. In this study, a computational work to investigate the effect of the turbulent wake on two-dimensional subsonic jet was carried out with three different kinds of nozzle. Computations are applied to the two-dimensional unsteady, Navier-Stokes equations. Several kinds of turbulent models and wall functions are employed to validate the computational predictions. It was known that the wake flow enhanced the spread of the jet flow, compared with no wake flow condition. It was also found that the jet core is shortened by the wake flow developed from a control cylinder.

  • PDF

Analysis of Flame Generated Turbulence for a Turbulent Premixed Flame with Zone Conditional Averaging (영역분할조건평균법에 근거한 난류예혼합화염내 난류운동에너지 생성에 관한 연구)

  • Im, Yong-Hoon;Huh, Kang-Yul
    • 한국연소학회:학술대회논문집
    • /
    • 2003.12a
    • /
    • pp.49-56
    • /
    • 2003
  • Mathematical formulation of the zone conditional two-fluid model is established to consider flame-generated turbulence in premixed turbulent combustion. The conditional statistics of major flow variables are investigated to understand the mechanism of flame generated turbulence. The flow field in burned zone shows substantially increased turbulent kinetic energy, which is highly anisotropic due to reaction kinematics across thin flamelets. The transverse component of rms velocities in burned zone become larger than axial component in the core of turbulent flame brush. The major source or sink terms of turbulent kinetic energy are the interfacial transfer by the mean reaction rate and the work terms by fluctuating pressure and velocity on a flame surface.

  • PDF

Transported PDF Model for Turbulent Nonpremixed Flames (수송 확률밀도함수모델을 이용한 비예혼합 난류화염장 해석)

  • Lee, Jeong-Won;Seok, Joon-Ho;Kim, Yong-Mo
    • Journal of the Korean Society of Combustion
    • /
    • v.14 no.2
    • /
    • pp.32-41
    • /
    • 2009
  • The transported probability density function model combined with the consistent finite volume (FV) method has been applied to simulate the turbulent bluff-body reacting flows. To realistically account for the non-isotropic turbulence effects on the turbulent bluff-body reacting flows, the present PDF transport approach is based on the joint velocity- turbulent frequency-composition PDF formulation. The evolution of the fluctuating velocity of a particle is modeled by a simplified Langevin equation and the particle turbulence frequency is represented by the modified Jayesh - Pope model. Effects of molecular diffusion are represented by the interaction by exchange with the mean (IEM) mixing model. To validate this hybrid FV/PDF transport model, the numerical results are compared with experimental data for the turbulent bluff-body reacting flows.

  • PDF

Numerical Study on Structure and Pollutant Formation for Syngas Turbulent Nonpremixed Swirling Flames (석탄가스 선회난류 비예혼합 화염장의 화염구조 및 NOx 배출특성 해석)

  • Lee, Jeong-Won;Kang, Sung-Mo;Kim, Yong-Mo;Joo, Yong-Jin
    • Journal of the Korean Society of Combustion
    • /
    • v.14 no.2
    • /
    • pp.10-17
    • /
    • 2009
  • The present study numerically investigate the effects of the Syngas chemical kinetics on the basic flame properties and the structure of the Syngas nonpremixed flames. In order to realistically represent the turbulencechemistry interaction and the spatial inhomogeneity of scalar dissipation rate, the Eulerian Particle Flamelet Model (EPFM) with multiple flamelets has been applied to simulate the combustion processes and NOx formation in the syngas turbulent nonpremixed flames. Validation cases include the Syngas turbulent nonpremixed jet and swirling flames. Based on numerical results, the detailed discussion has been made for the effects of the chemical kinetics, the flame structure, and NOx formation characteristics in the turbulent Syngas nonpremixed flames.

  • PDF