• Title/Summary/Keyword: Turbulence modeling

Search Result 251, Processing Time 0.029 seconds

Turbulent Natural Convection in a Hemispherical Geometry Containing Internal Heat SourcesZ

  • Lee, Heedo;Park, Goon-cherl
    • Nuclear Engineering and Technology
    • /
    • v.30 no.6
    • /
    • pp.496-506
    • /
    • 1998
  • This paper deals with the computational modeling of buoyancy-driven turbulent heat transfer involving spatially uniform volumetric heat sources in semicircular geometry. The Launder & Sharma low-Reynolds number k-$\varepsilon$ turbulence model without any modifications and the SIMPLER computational algorithm were used for the numerical modeling, which was incorporated into the new computer code CORE-TNC. This computer code was subsequently benchmarked with the Mini-ACOPO experimental data in the modified Rayleigh number range of 2$\times$10$^{13}$ $\times$10$^{14}$ . The general trends of the velocity and temperature fields were well predicted by the model used, and the calculated isotherm patterns were found to be very similiar to those observed in previous experimental investigations. The deviation between the Mini-ACOPO experimental data and the corresponding numerical results obtained with CORE-TNC for the average Nusselt number was less than 30% using fine grid in the near-wall region and the three-point difference formula for the wall temperature gradient. With isothermal pool boundaries, heat was convected predominantly to the upper and adjacent lateral surfaces, and the bottom surface received smaller heat fluxes.

  • PDF

Modeling of 2D Axisymmetric Reacting Flow in Solid Rocket Motor with Preconditioning

  • Lee, S.N.;Baek, S.W.
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.260-265
    • /
    • 2008
  • A numerical scheme for solid propellant rocket has been studied using preconditioning method to research unsteady combustion processes for the double-base propellant with a converging-diverging nozzle. The Navier-Stokes equation is solved by dualtime stepping method with finite volume method. The turbulence model uses a shear stress transport modeling. The species equation follows up the method of Xinping WI, Mridul Kumar and Kenneth K. Kuo. A preconditioned algorithm is applied to solve incompressible regime inside the combustor and compressible flow at nozzle. Mass flux was evaluated using modified advective upwind splitting method. The simulated result the comparison a fully coupled implicit method and a semi implicit method in terms of accuracy and efficiency. This report shows the result of solid rocket propellant combustion.

  • PDF

Dynamic wind effects : a comparative study of provisions in codes and standards with wind tunnel data

  • Kijewski, T.;Kareem, A.
    • Wind and Structures
    • /
    • v.1 no.1
    • /
    • pp.77-109
    • /
    • 1998
  • An evaluation and comparison of seven of the world's major building codes and standards is conducted in this study, with specific discussion of their estimations of the alongwind, acrosswind, and torsional response, where applicable, for a given building. The codes and standards highlighted by this study are those of the United States, Japan, Australia, the United Kingdom, Canada, China and Europe. In addition, the responses predicted by using the measured power spectra of the alongwind, acrosswind and torsional responses for several building shapes tested in a wind tunnel are presented and a comparison between the response predicted by wind tunnel data and that estimated by some of the standards is conducted. This study serves not only as a comparison of the response estimates by international codes and standards, but also introduces a new set of wind tunnel data for validation of wind tunnel-based empirical expressions.

Aeroelastic modeling to investigate the wind-induced response of a multi-span transmission lines system

  • Azzi, Ziad;Elawady, Amal;Irwin, Peter;Chowdhury, Arindam Gan;Shdid, Caesar Abi
    • Wind and Structures
    • /
    • v.34 no.2
    • /
    • pp.231-257
    • /
    • 2022
  • Transmission lines systems are important components of the electrical power infrastructure. However, these systems are vulnerable to damage from high wind events such as hurricanes. This study presents the results from a 1:50 scale aeroelastic model of a multi-span transmission lines system subjected to simulated hurricane winds. The transmission lines system considered in this study consists of three lattice towers, four spans of conductors and two end-frames. The aeroelastic tests were conducted at the NSF NHERI Wall of Wind Experimental Facility (WOW EF) at the Florida International University (FIU). A horizontal distortion scaling technique was used in order to fit the entire model on the WOW turntable. The system was tested at various wind speeds ranging from 35 m/s to 78 m/s (equivalent full-scale speeds) for varying wind directions. A system identification (SID) technique was used to evaluate experimental-based along-wind aerodynamic damping coefficients and compare with their theoretical counterparts. Comparisons were done for two aeroelastic models: (i) a self-supported lattice tower, and (ii) a multi-span transmission lines system. A buffeting analysis was conducted to estimate the response of the conductors and compare it to measured experimental values. The responses of the single lattice tower and the multi-span transmission lines system were compared. The coupling effects seem to drastically change the aerodynamic damping of the system, compared to the single lattice tower case. The estimation of the drag forces on the conductors are in good agreement with their experimental counterparts. The incorporation of the change in turbulence intensity along the height of the towers appears to better estimate the response of the transmission tower, in comparison with previous methods which assumed constant turbulence intensity. Dynamic amplification factors and gust effect factors were computed, and comparisons were made with code specific values. The resonance contribution is shown to reach a maximum of 18% and 30% of the peak response of the stand-alone tower and entire system, respectively.

Comparative Evaluation of Three-dimensional Turbulence Models in Coastal Region (연안 해수유동에 관한 3차원 난류모형의 비교평가)

  • 정태성
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.8 no.3
    • /
    • pp.256-267
    • /
    • 1996
  • In estuarine 3-dimensional numerical modeling. it is very important to calculate vertical eddy viscosity accurately. Various turbulence models employing eddy viscosity concept were applied to the steady flow in an open-channel and the tidal flow in long tidal channel and compared. The evaluations include the verification tests against experimental data sets for steady and tidal flows. The simulation results have shown that the compared models are in good agreements with experimental data of steady flow while only $textsc{k}$-$\varepsilon$ model, $textsc{k}$-ι model, and 1-equation model with well-defined mixing length profile give good agreements with experimental data of tidal flow.

  • PDF

Investigation on the Developing Turbulent Flow In a Curved Duct of Square Cross-Section Using a Low Reynolds Number Second Moment Turbulence Closure (2차모멘트 난류모형을 이용한 정사각 단면 곡덕트 내 발달하는 난류유동 변화에 대한 고찰)

  • Chun, Kun-Ho;Choi, Young-Don;Shin, Jong-Keun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.8
    • /
    • pp.1063-1071
    • /
    • 1999
  • Fine grid calculations are reported for the developing turbulent flow in a curved duct of square cross-section with a radius of curvature to hydraulic diameter ratio ${\delta}=Rc/D_H=3.357 $ and a bend angle of 720 deg. A sequence of modeling refinements is introduced; the replacement of wall function by a fine mesh across the sublayer and a low Reynolds number algebraic second moment closure up to the near wall sublayer in which the non-linear return to isotropy model and the cubic-quasi-isotropy model for the pressure strain are adopted; and the introduction of a multiple source model for the exact dissipation rate equation. Each refinement is shown to lead to an appreciable improvement in the agreement between measurement and computation.

Modeling and Analysis of Modified Active Frequency Drift Method (개선된 AFD기법의 모델링 및 분석)

  • An, Jin-Ung;Yu, Gwon-Jong;Choy, Ich;Choi, Ju-Yeop;Lee, Ki-Ok
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.16 no.2
    • /
    • pp.145-151
    • /
    • 2011
  • In this paper, among the active islanding detection techniques, the modified active frequency drift method was analyzed, which is relatively easy to apply to the single-phase grid-connected PV PCS. The existing designs for turbulences in these applications were empirically conducted, and do not have sufficient reliability and performance. Therefore, three application forms of the modified active frequency drift technique were modeled, based on which the proper magnitude of turbulence, which is the frequency acceleration component, was calculated. Using the results, the magnitude of and injection method for turbulence for ensuring the islanding detection performance and improving the output power quality were proposed, and they were verified via simulations and experiment to prove that the reliable islanding detection technique can be developed merely by measuring the basic output power quality, without the need for expensive islanding simulation equipment.

Reaction Zone Thickness of Turbulent Premixed Flame

  • Yamamoto, Kazuhiro;Nishizawa, Yasuki;Onuma, Yoshiaki
    • Journal of the Korean Society of Combustion
    • /
    • v.6 no.2
    • /
    • pp.36-42
    • /
    • 2001
  • Usually, we use the flame thickness and turbulence scale to classify the flame structure on a phase diagram of turbulent combustion. The flame structure in turbulence is still in debate, and many studies have been done. Since the flame motion is rapid and its reaction zone thickness is very thin, it is difficult to estimate the flame thickness. Here, we propose a new approach to determine the reaction zone thickness based on ion current signals obtained by an electrostatic probe, which has enough time and space resolution to detect flame fluctuation. Since the signal depends on the flow condition and flame curvature, it may be difficult to analyze directly these signals and examine the flame characteristics. However, ion concentration is high only in the region where hydrocarbon-oxygen reactions occur, and we can specify the reaction zone. Based on the reaction zone existing, we estimate the reaction zone thickness. We obtain the thickness of flames both in the cyclone-jet combustor and on a Bunsen burner, compared with theoretically predicted value, the Zeldovich thickness. Results show that the experimentally obtained thickness is almost the same as the Zeldovich thickness. It is concluded that this approach can be used to obtain the local flame structure for modeling turbulent combustion.

  • PDF

Numerical Study for 3D Turbulent Flow in High Incidence Compressor Cascade (고입사각 압축기 익렬내의 3차원 난류유동에 관한 수치적 연구)

  • 안병진;정기호;김귀순;임진식;김유일
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2002.04a
    • /
    • pp.35-40
    • /
    • 2002
  • A numerical analysis based on two-dimensional and three-dimensional incompressible Navier-Stokes equations has been carried out for double-circular-arc compressor cascades and the results are compared with available experimental data at various incidence angles. The 2-D and 3-D computational codes based on SIMPLE algorithm adopt pressure weighted interpolation method for non-staggered grid and hybrid scheme for the convertive terms. Turbulence modeling is very important for prediction of cascade flows, which are extremely complex with separation and reattachment by adverse pressure gradient. In this paper k-$\varepsilon$ turbulence model with wall function is used to increase efficiency of computation times.

  • PDF

Consistent inflow boundary conditions for modelling the neutral equilibrium atmospheric boundary layer for the SST k-ω model

  • Yang, Yi;Xie, Zhuangning;Gu, Ming
    • Wind and Structures
    • /
    • v.24 no.5
    • /
    • pp.465-480
    • /
    • 2017
  • Modelling an equilibrium atmospheric boundary layer (ABL) in computational wind engineering (CWE) and relevant areas requires the boundary conditions, the turbulence model and associated constants to be consistent with each other. Among them, the inflow boundary conditions play an important role and determine whether the equations of the turbulence model are satisfied in the whole domain. In this paper, the idea of modeling an equilibrium ABL through specifying proper inflow boundary conditions is extended to the SST $k-{\omega}$ model, which is regarded as a better RANS model for simulating the blunt body flow than the standard $k-{\varepsilon}$ model. Two new sets of inflow boundary conditions corresponding to different descriptions of the inflow velocity profiles, the logarithmic law and the power law respectively, are then theoretically proposed and numerically verified. A method of determining the undetermined constants and a set of parameter system are then given, which are suitable for the standard wind terrains defined in the wind load code. Finally, the full inflow boundary condition equations considering the scale effect are presented for the purpose of general use.