• Title/Summary/Keyword: Turbulence energy

Search Result 662, Processing Time 0.029 seconds

Analysis of In-cylinder Flow in a Miller Cycle Engine with Variable IVC for HEV (밀러사이클 적용 HEV 엔진 실린더의 가변흡기밸브 닫힘각에 따른 실린더내 유동해석)

  • Kim, Sangmyeong;Sung, Gisu;Lee, Jinwook
    • Journal of ILASS-Korea
    • /
    • v.19 no.1
    • /
    • pp.25-32
    • /
    • 2014
  • For reduction of $CO_2$ emission emitted from combustion engine, the developed nations have been focused on R&D of hybrid electric vehicle. Further more, many automobile companies are researching on various techniques related to engine used in HEV to enhance fuel economy. One of key techniques is miller cycle that control a valve timing to reduce compression stroke for saving energy and increase expansion stroke for high power. In this study, it was investigated the in-cylinder flow characteristics of miller cycle with variable intake valve timing by using the ANSYS simulation code. For simulation, the key analytic parameter defined as intake valve closing timing and cam profile. As main results, it was shown that LIVC cause a lower pressure inside cylinder and had better control turbulence intensity.

Sensible heat flux estimated by gradient method at Goheung bay wetland (고흥만 습지에서 경도법으로 산출한 현열플럭스)

  • Kim, Dong-Su;Kwon, Byung-Hyuk;Kim, Il Kyu;Kang, Dong Hwan;Kim, Kwang-Ho;Kim, Geun-Hoi;Park, Jun-Sang
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.20 no.2
    • /
    • pp.156-167
    • /
    • 2008
  • Meorological data have been collected to monitor the wetland area in Goheung bay since 2003 and four intensive observations were conducted to study effects of the atmospheric turbulence on the energy budget and the ecological changes. We improved an algorithm to estimate the sensible heat flux with routine data. The sensible heat flux estimated by gradient method was in good agreement with that measured by precision instruments such as surface layer scintillometer and ultrasonic anemometer. Diurnal variations of sensible heat flux showed analogous tendency to those of temperature gradient. When the vertical wind shear of horizontal wind components was weak, even though temperature gradient was strong, the gradient method underestimated the sensible heat flux. A compensation for the cloud will make this gradient method be a helpful tool to monitor the ecosystem without expensive instruments except for weak wind shear and temperature gradient.

Analysis of Secondary Flow Effects on Turbulent Flow in Nuclear Reactor Fuel Rod Bundles (핵연료 집합체 내에서의 이차유동이 난류에 미치는 영향에 대한 해석적 분석)

  • Shon, Jae-Yeong;Park, Goon-Chul
    • Nuclear Engineering and Technology
    • /
    • v.23 no.3
    • /
    • pp.275-284
    • /
    • 1991
  • It is important to predict the main feature of fully developed turbulent secondary flow through infinite triangular arrays of parallel rod bundles. One-equation turbulence model which include anisotropic eddy viscosity model was applied to predict the exact velocity field. For a constant properties, Reynolds equations were solved by the finite element method. Mean axial velocity near the wall is simulated by the law of the wall. The numerical results showed good agreement with avaiable experimental data. The strength of the secondary flow increased with Reynolds number but decreased with rod spacing, P/D (pitch-to-diameter). The secondary flow affects remarkably the distribution of the axial velocity, wall shear stress and turbulent kinetic energy in the closely packed rod array bundles.

  • PDF

Numerical Study on Flame Structure and Pollutant Formation for Syngas Turbulent Nonpremixed Swirl Burner (석탄가스 선회난류 연소기의 화염구조 및 공해물질 배출특성 해석)

  • Lee, Jeong-Won;Kang, Sung-Mo;Kim, Yong-Mo
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.11a
    • /
    • pp.449-452
    • /
    • 2007
  • The present study numerically investigate the effects of the Syngas chemical kinetics on the basic flame properties and the structure of the Syngas diffusion flames. In order to realistically represent the turbulence-chemistry interact ion and the spatial inhomogeneity of scalar dissipation rate. the Eulerian Particle Flamelet Model(EPFM) with multiple flamelets has been applied to simulate the combustion processes and NOx formation in the syngas turbulent nonpremixed flames. Due to the ability for interactively describing the transient behaviors of local flame structures with CFD solver, the EPFM model can effectively account for the detailed mechanisms of NOx format ion including thermal NO path, prompt and nitrous NOx format ion, and reburning process by hydrocarbon radical without any ad-hoc procedure. validation cases include the Syngas turbulent nonpremixed jet and swirling flames. Based on numerical results, the detailed discussion has been made for the sensitivity of the Syngas chemical kinetics as well as the precise structure and NOx formation characteristics of the turbulent Syngas nonpremixed flames.

  • PDF

Non-stationary and non-Gaussian characteristics of wind speeds

  • Hui, Yi;Li, Bo;Kawai, Hiromasa;Yang, Qingshan
    • Wind and Structures
    • /
    • v.24 no.1
    • /
    • pp.59-78
    • /
    • 2017
  • Non-stationarity and non-Gaussian property are two of the most important characteristics of wind. These two features are studied in this study based on wind speed records measured at different heights from a 325 m high meteorological tower during the synoptic wind storms. By using the time-frequency analysis tools, it is found that after removing the low frequency trend of the longitudinal wind, the retained fluctuating wind speeds remain to be asymmetrically non-Gaussian distributed. Results show that such non-Gaussianity is due to the weak-stationarity of the detrended fluctuating wind speed. The low frequency components of the fluctuating wind speeds mainly contribute to the non-zero skewness, while distribution of the high frequency component is found to have high kurtosis values. By further studying the decomposed wind speed, the mechanisms of the non-Gaussian distribution are examined from the phase, turbulence energy point of view.

CAVITATION ANALYSIS IN A CENTRIFUGAL PUMP USING VOF METHOD (VOF기법을 이용한 원심펌프 내의 공동현상에 관한 유동해석)

  • Lee, W.J.;Lee, J.H.;Hur, N.;Yoon, I.S.
    • Journal of computational fluids engineering
    • /
    • v.20 no.4
    • /
    • pp.1-6
    • /
    • 2015
  • Centrifugal pumps consume considerable amount of energy in various industrial applications. Therefore, improvement of the efficiency of these machines has become a major challenge. Cavitation is a phenomenon which decreases the pump efficiency and even causes structural demage. Hence, the goal of this paper is to investigate the cavitation problem in the single-stage and double-stage centrifugal pumps. The Volume of Fraction (VOF) method has been used for the numerical simulations together with Rayliegh-Plesset model for the gas-liquid two-phase flow inside the pump. In order to capture the turbulent phenomena, the standard k-${\varepsilon}$ turbulence model has been adopted, and the simulations have been done as unsteady cases. In addition, the motion of the rotating parts has been simulated using Multi Reference Frame(MRF) method. The results are presented and compared in terms of hydraulic head and NPSH for both the single-stage and double-stage pumps. The H-Q curves show the effects of cavitation on decreasing the pumps performances.

The Flow Characteristics of Parallel Plane Jets Using Particle Image Velocimetry Technique (I) - Unventilated Jet - (PIV기법을 이용한 병렬 평면제트의 유동특성 (I) - 유입이 제한된 제트 -)

  • Kim, Dong-Keon;Yoon, Soon-Hyun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.3
    • /
    • pp.302-310
    • /
    • 2003
  • Experiments were conducted to show the characteristics of the flow on unventilated parallel plane jets. Measurements of mean velocity components and turbulent intensities were carried out with a particle image velocimetry to investigate the flow field generated by the air issued from two identical plane parallel nozzles and mixed with the ambient air. The measurements range of these experiments were Reynolds number of 5300 based on the nozzle width and the cases of nozzle-to-nozzle distance were four times. six times and eight times the width of the nozzle. Results show that a recirculation zone with a sub-atmospheric static pressure was bounded by the inner shear layers of the individual jets and the nozzles plate. The positions. where maximum value of mean turbulent intensities and mean turbulent kinetic energy show, were at the same position with the merging point. The spread of jets in the merging region increases more rapidly than that of Jets in the converging and the combined region. As nozzle-to-nozzle distances were increased. it was shown that merging and combined lengths were shorter.

Assembly strategies of wind turbine towers for minimum fatigue damage

  • Nunez-Casado, Cristina;Lopez-Garcia, Oscar;de las Heras, Enrique Gomez;Cuerva-Tejero, Alvaro;Gallego-Castillo, Cristobal
    • Wind and Structures
    • /
    • v.25 no.6
    • /
    • pp.569-588
    • /
    • 2017
  • The aim of this paper is to present a method to obtain the dynamic response of a wind turbine tower in time domain by means of the generation of time series and to estimate the associated fatigue damage by means of a Rainflow counting algorithm. The proposed method is based on assuming the vortex shedding is a bidimensional phenomena and on following a classical modal superposition method to obtain the structure dynamic response. Four different wind turbine tower geometric configurations have been analyzed in a range of usual wind velocities and covering extreme wind velocities. The obtained results have shown that, depending on the turbulence intensity and the mean wind velocity, there are tower geometric configurations more advantageous from the fatigue load standpoint. Consequently, the presented model can be utilized to define assembly strategies oriented to fatigue damage minimization.

Validation of the numerical simulations of flow around a scaled-down turbine using experimental data from wind tunnel

  • Siddiqui, M. Salman;Rasheed, Adil;Kvamsdal, Trond
    • Wind and Structures
    • /
    • v.29 no.6
    • /
    • pp.405-416
    • /
    • 2019
  • Aerodynamic characteristic of a small scale wind turbine under the influence of an incoming uniform wind field is studied using k-ω Shear Stress Transport turbulence model. Firstly, the lift and drag characteristics of the blade section consisting of S826 airfoil is studied using 2D simulations at a Reynolds number of 1×105. After that, the full turbine including the rotational effects of the blade is simulated using Multiple Reference Frames (MRF) and Sliding Mesh Interface (SMI) numerical techniques. The differences between the two techniques are quantified. It is then followed by a detailed comparison of the turbine's power/thrust output and the associated wake development at three tip speeds ratios (λ = 3, 6, 10). The phenomenon of blockage effect and spatial features of the flow are explained and linked to the turbines power output. Validation of wake profiles patterns at multiple locations downstream is also performed at each λ. The present work aims to evaluate the potential of the numerical methods in reproducing wind tunnel experimental results such that the method can be applied to full-scale turbines operating under realistic conditions in which observation data is scarce or lacking.

Turbulent plane Couette-Poiseuille flow over a 2-D rod-roughened wall (2차원 표면조도가 있는 난류 평면 Couette-Poiseuille 유동에 대한 직접수치모사)

  • Kim, Jeong Hyun;Lee, Young Mo;Lee, Jae Hwa
    • Journal of the Korean Society of Visualization
    • /
    • v.17 no.3
    • /
    • pp.12-18
    • /
    • 2019
  • Direct numerical simulation of a fully developed turbulent plane Couette-Poiseuille flow with a two-dimensional (2-D) rod-roughened wall is performed to investigate the impacts of the surface roughness. It is shown that the logarithmic region in the mean velocity profile over the rough wall Couette-Poiseuille flow is significantly shortened by the surface roughness compared to that over a turbulent Couette-Poiseuille flow with smooth wall. The Reynolds shear stress over the rough wall Couette-Poiseuille flow is decreased compared to that for a smooth case in the outer layer. These results are attributed to weakened turbulence activity or roll-cell mode over the rough wall Couette-Poiseuille flow near the channel centerline due to suppressed development of u'-structure on the top wall, as documented through spanwise energy spectra of the streamwise velocity fluctuations. Inspection of congregation motion near the bottom wall and time evolution of u'-structure reveal weakened co-supporting cycle for the rough wall case.