• Title/Summary/Keyword: Turbulence effect

Search Result 849, Processing Time 0.027 seconds

Computational Simulation of Lightning Strike on Aircraft and Design of Lightning Protection System (항공기 낙뢰 전산 시뮬레이션 및 보호시스템 설계)

  • Kim, Jong-Jun;Baek, Sang-Tae;Song, Dong-Geon;Myong, Rho-Shin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.12
    • /
    • pp.1071-1086
    • /
    • 2016
  • The safety of aircraft can be threatened by environmental factors, such as icing, turbulence, and lightning strike. Due to its adverse effects on aircraft structure and electronic components of aircraft, lightning strike is one of the biggest hazards on aircraft safety. Lightning strike can inject high voltage electric current to the aircraft, which may generate strong magnetic field and extreme hot spots, leading to severe damage of structure or other equipment in aircraft. In this work, mechanism of lightning strike and associated direct and indirect effects of lightning on aircraft were studied. First, on the basis of aircraft lightning regulations provided by Aerospace Recommended Practice (ARP), we considered different lightning waveform and zones of an aircraft. A coupled thermal-electrical computational model of ABAQUS was then used for simulating flow of heat and electric current caused by a lightning strike. A study on fuel tank, with and without lightning protection system, was also conducted using the computational model. Finally, electric current flow on two full scale airframes was analyzed using the EMA3D code.

The Influence of Evaporation from a Stream on Fog Events in the Middle Nakdong River (낙동강 중류에서 하천 증발이 안개에 미치는 영향)

  • Park, Jun Sang;Kim, Kyu Rang;Kang, Misun;Kim, Baek-Jo
    • Journal of the Korean earth science society
    • /
    • v.38 no.6
    • /
    • pp.395-404
    • /
    • 2017
  • In this study, we classified observed fog events in the Middle Nakdong River near Gumi and analyzed the meteorological characteristics before and after the fog formation. The observation was performed from 2013 to 2015 using visibility meter. A total of 74 fog events were observed and most of them were classified as steam fog. The duration of observed steam fogs was longer than that of typical inland fogs because the nocturnal evaporation from the water surface was enhanced by the topographical characteristics. In order to analyze the effect of evaporation from the stream on the fog duration, the evaporation was estimated using the Penman-Monteith and the Bulk aerodynamic methods. The estimated evaporation by the Bulk method was similar to the actual evaporation from the water surface. Therefore, the Bulk method is suitable for estimating the evaporation from water surface. The evaporation amount, estimated by using the Bulk method was higher on fog days than non-fog days at 06 LST and 07 LST. The added evaporation of fog days released latent heat to the atmosphere and provided energy to maintain the turbulence in the fog. This phenomenon was confirmed by the increase of wind speed, temperature and turbulent kinetic energy within the fog.

A Study on the Comparison and Analysis of Debris Reduction System on Small Bridge (소교량 유송잡물 저감시설의 비교 분석 연구)

  • Kim, Sung-Joong;Jung, Do-Joon;Kang, Joon-Gu;Yeo, Hong-Koo;Kim, Jong-Tae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.3
    • /
    • pp.31-41
    • /
    • 2016
  • Damage to structures, such as bridge piers, are increasing rapidly due to the debris moving along rivers at the time of flooding. Therefore, the debris fin, debris deflector and debris sweeper, which are debris reduction systems, were produced in this study and an accumulation experiment was carried out on the experimental channel according to the existence of the reduction system. The debris fin is the reduction system that creates parallel flow on debris accumulated on the bridge to pass through the bridge, which was produced using wood. In addition, the debris deflector was produced using steel pipes and it has the type of detouring the direction of debris. The debris sweeper passes the debris using the magnetic force rotation of a screw-shaped cylindrical structure by water flow and it was produced using acrylic material. The experiment was carried out by analyzing the level of accumulation according to the hardness and dropping method of the debris and comparing the accumulation rate of reduction systems, and the experiment was carried out 5 times. According to the experimental results, there was a difference in the accumulation rate according to the type of reduction system and the shape of debris, and it often depended significantly on the initial shape of debris accumulation. The direct debris reduction effect on the bridge was higher in the order of the debris deflector, debris sweeper and debris fin, but in case of the debris deflector, damage, such as stream turbulence, changes in water level and river bed, and the loss of deflector can occur due to debris accumulated directly on the debris deflector. Therefore, it is necessary to design the debris deflector considering these issues.

Study of SNCR Application to Industrial Boiler for NOx Control (산업용 보일러의 질소산화물 제어를 위한 SNCR 적용 연구)

  • Shin, Mi-Soo;Kim, Hey-Suk;Jang, Dong-Soon
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.3
    • /
    • pp.286-292
    • /
    • 2005
  • This study is to investigate the industrial boiler which can be significantly affected by the restriction of NOx. Note that the application of SNCR method to industrial boiler is usually blown as not feasible due to the insufficient residence time for proper mixing. The purpose of this study is to investigate the applicability of the SNCR system application to the industrial boiler, which produces 40 tons of steam per hour using heavy oil. For the industrial boiler with 3-D rectangular coordinate, the general coding are made fur various turbulence modeling such as turbulent flow, turbulent fuel combustion, thermal NO formation and destruction together with the NO reaction with reducing agents. Further, the incorporation of drop trajectory model is successfully made in 3-D rectangular coordinate with Lagrangian frame and the main swirl burner effect on the characteristics of flame is considered. As expected a short flame was created and thereby NOx is removed more efficiently by increasing the proper region of temperature for NO reduction reaction. The validation of program was made successfully by the comparison of experimental data. Based on the reliable calculation results, the SNCR method in a industrial boiler shows the possibility as one of viable NO reduction method by the use of well designed mixing air of reducing agent.

Numerical Simulation of Solitary Wave Run-up with an Internal Wave-Maker of Navier-Stokes Equations Model (내부조파기법을 활용한 Navier-Stokes 방정식 모형의 고립파 처오름 수치모의)

  • Ha, Tae-Min;Kim, Hyung-Jun;Cho, Yong-Sik
    • Journal of Korea Water Resources Association
    • /
    • v.43 no.9
    • /
    • pp.801-811
    • /
    • 2010
  • A three-dimensional numerical model called NEWTANK is employed to investigate solitary wave run-up with an internal wave-maker on a steep slope. The numerical model solves the spatially averaged Navier-Stokes equations for two-phase flows. The LES (large-eddy-simulation) approach is adopted to model the turbulence effect by using the Smagorinsky SGS (sub-grid scale) closure model. A two-step projection method is adopted in numerical solutions, aided by the Bi-CGSTAB (Bi-Conjugate Gradient Stabilized) method to solve the pressure Poisson equation for the filtered pressure field. The second-order accurate VOF (volume-of-fluid) method is used to track the distorted and broken free surface. A solitary wave is first internally generated and propagated over a constant water depth in the three-dimensional domain. Numerically predicted results are compared with analytical solutions and numerical errors are analyzed in detail. The model is then applied to study solitary wave run-up on a steep slope and the obtained results are compared with available laboratory measurements.

A Study for Examine into Nursing Organizational Culture (I);Review of the Literature about the Concept of Organizational Culture (병원 간호조직문화 규명을 위한 연구(I);조직문화 개념에 대한 문헌고찰)

  • Kim, Moon-Sil;Han, Su-Jeong;Kim, Jung-A;Park, Hyun-Tae
    • Journal of Korean Academy of Nursing Administration
    • /
    • v.4 no.1
    • /
    • pp.89-105
    • /
    • 1998
  • Modern organizations, both complicated and complex, operate in an economic climate of· turbulence and rapid change. And Today's healthcare environment is changing, driven by demographic, environmental. social, political and technological forces. In actual practice, the organization usually depend on several factors such as economic state of organization, managerial strategies, a synthesis of several theories that reflect individual biases, specific circumstances, and practical realities. These rapidly changing healthcare environment and professional nursing practice need a strategy for the organizational development and goal attainment. An understanding of organizational culture could help managers enhance or expand their management strategy, thus increasing the probability of their success in the organization. Organizational culture is an abstract, yet potent managerial concept. With roots in several disciplines, several perspectives and definitions of organizational culture have emerged. The concept of organizational culture has been rapidly introduced into the academic and organizational world, with the much attention to the excellent companies that have continued rapid grow th despite the overall world economic recession in the late of 1970s. Organizational culture is the combination of the symbols, language, assumptions, and behaviors that overtly manifest an organization's norm and values. It is the taken-for-granted and shared meanings people assign to their social surroundings that can have a profound effect on an organizaitonal decision making and performance. For attaining a organizational goal and developing organization, it is necessary to put emphasis on developing organizational culture. It has to set organizational culture well understood by its members as an instrument to achieve the organizational goals. Both Manager and staff can focus and act on the values identified. Also, managers will exhibit better decision making capabilities because they are guided by perception of the organizational values. Therefore, understanding of organizational culture could give a strategy for organizational development that assist hiring personnel, orienting new comers, facilitating organizational change and promoting learning and so on. But their is few study on nursing organizational culture in Korea. Moreover they have not had a clear definition of Korean nursing organizational culture. Therefore, it is necessary to lay down definition of Korean nursing organizational culture and fine out real factor of Korean nursing culture. For defining a definition of Korean nursing organizational culture, this study assessed several definitions of organizational culture, factors of culture, types of culture, and functions of culture through book review.

  • PDF

Effects of Double-diffusive Convection on the Mass Transport of Copper Ions in a Horizontal Porous Layer (수평 다공성유체층에서 이온의 물질전달에 대한 이중확산대류 효과)

  • Yoon Do-Young;Kim Min Chan;Choi Chang Kyun
    • Journal of the Korean Electrochemical Society
    • /
    • v.2 no.2
    • /
    • pp.98-105
    • /
    • 1999
  • In the present study, buoyant force and its stabilizing effects in an electrostatic field were examined systematically in order to reduce the effect of natural convection with thermal stratification in a horizontal fluid-saturated porous layer. The correlation of ionic mass transport induced by double-diffusive convection in a horizontal porous layer has been derived theoretically. And the theoretical model was examined by electrochemical experiments. The theoretical correlation for mass transport which is satisfying Forchheimer's flow equation and based on the micro-turbulence model is derived as a function of soltual Darcy-Rayleigh number, thermal Darcy-Rayleigh number and Lewis number. In the experiment, the mass transport of copper ions in $CuSO_4-H_2SO_4$ solution is measured by electrochemical technique. By assembling theoretical correlation and experimental results, the mass transport correlation induced by double-diffusive convection is proposed as $$Sh=\frac{0.03054(Rs_D-LeRa_D)^{1/2}}{1-3.8788(Rs_D-LeRa_D)^{-1/10}}$$ The present correlation looks flirty reasonable with comparing experimental results, and very promising for the applications of its prototype into various systems involving heat transfer as well as mass transfer, in order to control the effects of natural convection effectively.

Direct numerical simulations of viscoelastic turbulent channel flows at high drag reduction

  • Housiadas Kostas D.;Beris Antony N.
    • Korea-Australia Rheology Journal
    • /
    • v.17 no.3
    • /
    • pp.131-140
    • /
    • 2005
  • In this work we show the results of our most recent Direct Numerical Simulations (DNS) of turbulent viscoelastic channel flow using spectral spatial approximations and a stabilizing artificial diffusion in the viscoelastic constitutive model. The Finite-Elasticity Non-Linear Elastic Dumbbell model with the Peterlin approximation (FENE-P) is used to represent the effect of polymer molecules in solution, The corresponding rheological parameters are chosen so that to get closer to the conditions corresponding to maximum drag reduction: A high extensibility parameter (60) and a moderate solvent viscosity ratio (0.8) are used with two different friction Weissenberg numbers (50 and 100). We then first find that the corresponding achieved drag reduction, in the range of friction Reynolds numbers used in this work (180-590), is insensitive to the Reynolds number (in accordance to previous work). The obtained drag reduction is at the level of $49\%\;and\;63\%$, for the friction Weissenberg numbers 50 and 100, respectively. The largest value is substantially higher than any of our previous simulations, performed at more moderate levels of viscoelasticity (i.e. higher viscosity ratio and smaller extensibility parameter values). Therefore, the maximum extensional viscosity exhibited by the modeled system and the friction Weissenberg number can still be considered as the dominant factors determining the levels of drag reduction. These can reach high values, even for of dilute polymer solution (the system modeled by the FENE-P model), provided the flow viscoelasticity is high, corresponding to a high polymer molecular weight (which translates to a high extensibility parameter) and a high friction Weissenberg number. Based on that and the changes observed in the turbulent structure and in the most prevalent statistics, as presented in this work, we can still rationalize for an increasing extensional resistance-based drag reduction mechanism as the most prevalent mechanism for drag reduction, the same one evidenced in our previous work: As the polymer elasticity increases, so does the resistance offered to extensional deformation. That, in turn, changes the structure of the most energy-containing turbulent eddies (they become wider, more well correlated, and weaker in intensity) so that they become less efficient in transferring momentum, thus leading to drag reduction. Such a continuum, rheology-based, mechanism has first been proposed in the early 70s independently by Metzner and Lamley and is to be contrasted against any molecularly based explanations.

The Paradox of the Plankton (플랑크톤 패러독스)

  • Lee, Hak Young;Moon, Sung-Gi;Huh, Man-Kyu
    • Journal of Life Science
    • /
    • v.25 no.5
    • /
    • pp.601-606
    • /
    • 2015
  • Hutchinson (1961) proposed that the large number of species in most plankton communities is remarkable in review of the competitive exclusion principle, which suggests that in homogeneous, well-mixed environments species that compete for the same resources cannot coexist. The principle of competitive exclusion would lead us to conclude that only a few species could coexist in such circumstances. Nevertheless, numerous competing species in most natural habitats are able to coexist, while generally only few resources (niches) limit these communities. It is coined “the paradox of plankton” by Hutchinson. We reviewed some literature of the proposed solutions and give a brief overview of the mechanisms proposed so far. The proposed mechanisms that we discuss mainly include spatial and temporal heterogeneity in physical and biological environment, externally imposed or self-generated spatial segregation, horizontal mesoscale turbulence of ocean characterized by coherent vortices, oscillation and chaos generated by several internal and external causes, stable coexistence and compensatory dynamic under fluctuating temperature in resource competition, and finally the role of toxin-producing phytoplankton in maintaining the coexistence and biodiversity of the overall plankton populations. Especially we sited Roy and Chattopadhyay’s reviews and their toxin-producing hypothesis by phytoplankton. This review may be some information to study plankton communities and effect to put the solutions to the paradox that have been proposed over the years into perspective.

Technique of Heat Transfer Augmentation in Impinging Air Jet System (충돌공기(衝突空氣) 분류계(噴流系)에서의 전열촉진기술(傳熱促進技術)에 관(關)한 연구(硏究))

  • Choi, Doo-Seob;Kum, Seong-Min;Lee, Yong-Hwa;Seo, Jeong-Yun
    • Solar Energy
    • /
    • v.13 no.1
    • /
    • pp.11-21
    • /
    • 1993
  • The purpose of this study was to investigate the enhancement of heat transfer without additional external power in the case of rectangular impingement air jet vertically on the flat heating surface. The technique used in the present study was placement of square rod bundles as a turbulence promoter in front of the heat transfer surface. The results obtained through this study were summerized as follws. High heat transfer enhancement was achieved by inserting rods in front of the heating flat plate. According to visulaization, it was examined because of flow acceleration and separation and disturbance of boundary layer. The smaller clerance between rod and heating plate was, the larger heat transfer effect became at each H/B. Arverage Nusselt number reached maximum at H/B=10 and the local augmentation rate of heat transfer became maximum at H/B=2. The maximum average heat transfer enhancement rate increase about 43% for the case of X/B=2 and C=1mm, compared to a flat plate without rods. The correlating equation of average Nusselt number and Reynolds number was obatined. As follws : ${\overline{Nu}}_0=1.249Re^{0.465}(C/A)^{-0.033}(H/B)^{0.013}$.

  • PDF