• Title/Summary/Keyword: Turbulence breakup

Search Result 15, Processing Time 0.021 seconds

The Effects of Orifice Internal Flow on the Breakup Characteristics of Liquid Sheets Formed by Like-Doublet Injectors (오리피스 내부유동에 따른 like-doublet 인젝터의 분열 특성)

  • Jung, K.H.;Khil, T.O.;Yoon, Y.B.
    • Journal of ILASS-Korea
    • /
    • v.7 no.4
    • /
    • pp.32-41
    • /
    • 2002
  • The breakup characteristics of liquid sheets formed by like-doublet injector were investigated in the cold-flow and atmospheric ambient pressure condition. The sheet breakup wavelength, which induces the sheet to be broken into ligaments, as well as the sheet breakup length, which is important for the flame location, was measured using a stroboscopic light. The liquid ligaments are formed intermittently after the breakup of sheet, and the wavelength of ligaments has been believed to have a relation to the combustion instability of liquid rocket engine. Therefore, the wavelength of ligaments and the breakup length of ligaments into fine drops were also measured. Since these spray characteristics are affected by the flow characteristics of two liquid jets before they impinge on each other, we focused on the effects of orifice internal flow such as the cavitation phenomenon that occurs inside the sharp-edged orifice. From the experimental results, we found that the liquid jet turbulence delays the sheet breakup and makes shorter wavelengths for both sheets and ligaments. Since the turbulent strength of sharp-edged orifice is stronger than that of round-edged orifice, the shape of orifice entrance results in large differences in the spray characteristics. Using these results, we proposed empirical models on the spray characteristics of the like-doublet injector, and these models are believed to provide some useful and actual data for designing liquid rocket combustors.

  • PDF

LES for Turbulent Flow in Hybrid Rocket Fuel Garin (하이브리드 로켓 산화제 난류 유동의 LES 해석)

  • Lee, Chang-Jin;Na, Yang
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.04a
    • /
    • pp.233-237
    • /
    • 2007
  • Recent experimental data shows that an irregular fuel surface pops up during the combustion test. This may contribute to the agitated boundary layer due to blowing effect of fuel vaporization. Blowing effect can be of significance in determining the combustion characteristics of solid fuel within the oxidizer flow. LES was implemented to investigate the flow behavior on the fuel surface and turbulence evolution due to blowing effect. Simple channel geometry was used for the investigation instead of circular grain configuration without chemical reactions. This may elucidate the main mechanism responsible for the formation of irregular isolated spots during the combustion in terms of turbulence generation. The interaction of turbulent flow with blowing mass flus causes to breakup turbulent coherent structures and to form the small scale isolated eddies near the fuel surface. This mechanism attributes to the formation of irregular isolated sopt on the fuel surface.

  • PDF

Macroscopic Breakup Characteristics of Water Gel Simulants with Triplet Impinging Spray Jet (젤 모사 추진제 삼중 충돌 분사 제트의 거시적 분열 특성 연구)

  • Hwang, Tae-Jin;Lee, In-Chul;Koo, Ja-Ye
    • Journal of ILASS-Korea
    • /
    • v.15 no.3
    • /
    • pp.109-114
    • /
    • 2010
  • The implementation of gelled propellants systems offers high performance, energy management of liquid propulsion, storability, and high density impulse of solid propulsion. The present study focused on the macroscopic spray characteristics of liquid sheets formed by triplet impinging jets of non-Newtonian liquids which are mixed by Carbopol 941 0.5%wt. The results are compared to experiments conducted on spray images which formed by triplet impinging jets concerning with airassist effect at center orifice. When gel propellants are injected by doublet impinging jets at low pressure and high pressure, closed rim pattern shape appeared by polymeric effect from molecular force and showed inactive atomization characteristics, because of extensional viscosity related by restriction of atomization process and breakup time delay of turbulence transition. As increasing mass flow rate of the air(increasing GAR), spray breakup level is also increased.

A Numerical Study on the Break-up of the Fuel Spray in Diesel Engine (디젤기관 연료분무의 분열 현상에 대한 수치해석적 연구)

  • Yang, H.C.;Choi, Y.K.;Ryou, H.S.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.3 no.6
    • /
    • pp.8-22
    • /
    • 1995
  • Three dimensional numerical study of non-evaporating and evaporating spray characteristics was performed in a quiescent and motoring condition of direct injection diesel engine. The calculation parameter was breakup model. The breakup models used were Reitz & Diwakar model and TAB model. The modified k-${\varepsilon}$ turbulence model considering the compressibility effect due to the compression and expansion of piston was used. The calculation results of the spray tip penetration and tip velocity using the TAB model showed similar trends comparing with the experimental data. Although the evaporation rate was not nearly affected with the breakup model at the higher injection pressure, in the low injection case, the evaporation rate result using the TAB model became higher than that of R&D model. The evaporation rate was increased with the injection pressure due to the vigorous interaction with the gas field.

  • PDF

Numerical Study on the Characteristics of Spray Combustion Processes in the DME and n-heptane Fueled Diesel-like Engine Conditions (DME 및 n-Heptane 연료의 디젤엔진 조건에서 분무연소특성 해석)

  • Yu, Yong-Wook;Suk, Jun-Ho;Lee, Sang-Kil;Kim, Yong-Mo
    • Journal of ILASS-Korea
    • /
    • v.13 no.2
    • /
    • pp.91-98
    • /
    • 2008
  • In the present study, in order to understand the overall spray combustion characteristics of DME fuel as well as to identify the distinctive differences of DME combustion processes against the conventional hydrocarbon liquid fuels, the sequence of the comparative analysis have been systematically made for DME and n-heptane liquid fuels. To realistically represent the physical processes involved in the spray combustion, this studyemploys the hybrid breakup model, the stochastic droplet tracking model, collision model, high-pressure evaporation model, and transient flamelet model with detailed chemistry. Based on numerical results, the detailed discussions are made in terms of the autoignition, spray combustion processes, flame structure, and turbulence-chemistry interaction in the n-heptane and DME fueled spray combustion processes.

  • PDF

Characteristics of the Atomization in Counter-Swirl Internal Mixing Atomizer

  • Lee, Sam-Goo;Kim, Kyu-Chul;Park, Byung-Joon
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 1999.10a
    • /
    • pp.27-27
    • /
    • 1999
  • To illustrate the global variation of the droplet mean diameters and the turbulent flow characteristics in counterflowing internal mixing pneumatic nozzle, the experimental measurements at five axial downstream locations(i.e., at Z=30, 50, 80, 120, and 170mm) were made using a PDPA(Phase Doppler Particle Analyzer) under the different air injection pressures ranging from 40 ㎪ to 120 ㎪. A nozzle with axi-symmetric tangential-drilled four holes at an angle of 15$^{\circ}$ has been designed and manufactured. The distributions of velocities, turbulence intensities, turbulence kinetic energy, turbulent correlation coefficients, spray angle, droplet mean diameters, volume flux, number density are quantitatively analyzed. It is possible to discern the effects of increasing air pressure. It indicates that the strong axial momentum in spite of more or less disparity between the velocity components means more reluctant to disperse radially, and that axial fluctuating velocities are substantially higher than those of radial and tangential ones, suggesting that the disintegration process is enhanced under higher air assist. The larger droplets are detected in the spray centerline at the near stations and smaller ones are generated due to further subsequent breakup at farther axial locations are attributed to the internal mixing type nozzle characteristics. Despite of the strong axial momentum, the poor atomization around the centre close to the nozzle exit is attributed to the lower rates of spherical particles which are not subject to instantaneous breakup. As it goes downstream, however, substantial increases in SMD(Sauter Mean Diameter) from the central part toward spray periphery are understandable because the droplet relative velocity is too low to bring about any subsequent disintegration.

  • PDF

Development and Validation of Spray Model of Coaxial Swirl Injector Installed in Liquid Propellant Rocket Engine (액체로켓엔진에 장착되는 스월 분사기의 분무 모델 개발 및 검증)

  • Moon, Yoon-Wan;Seol, Woo-Seok
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.11 no.5
    • /
    • pp.37-50
    • /
    • 2007
  • This study investigated the characteristics of spray generated by a liquid coaxial swirl injector used in a combustor of the liquid rocket engine. The linear stability analysis considered long and short wave was introduced in liquid sheet breakup. Through the hydrodynamic analysis the initial liquid sheet thickness spray angle and injection velocity were predicted. To evaluate the effect of turbulence model standard $k-{\varepsilon}$ and RNC $k-{\varepsilon}$ model were applied to numerical calculation and it was known that RNC $k-{\varepsilon}$ model was more applicable to predict spray characteristics. On the basis of this evaluation validation of the developed model was performed with swirl injector installed in LPRE and the predicted results of breakup length, spray angle, and SMD agreed well with experiments qualitatively and quantitatively.

Spray combustion with high temperature air in a Gas Turbine Combustor (가스터빈 연소기내의 고온공기 분무연소 해석)

  • Jo, Sang-Pil;Kim, Ho-Young;Park, Sim-Soo
    • 한국연소학회:학술대회논문집
    • /
    • 2004.06a
    • /
    • pp.192-198
    • /
    • 2004
  • A numerical study was conducted to determine the effects of high temperature air, including equivalent ratio on flow field, temperature, evaporation, and overall temperature distribution in gas turbine combustor. A sector model of a typical wall jet can combustor, featuring introduction of primary air and dilution air via wall jet, was used in calculations. Flow field and temperature distribution were analyzed. Operating conditions such as inlet temperature and overall equivalent ratio were varied from 373 to 1300 K, and from 0.3 to 0.6, respectively, while any other operating conditions were fixed. The RNG ${\kappa}-{\varepsilon}$ model and eddy breakup model were used for turbulence and combustion model respectively. It was found that the increase with the inlet air temperature, velocity in the combustor is accelerated and evaporation of liquid fuel is not affected in primary zone, high temperature inlet air enhances the evaporation and improves overall temperature distribution factor.

  • PDF

Study on Smoke Prediction in Heavy-duty Diesel Engine (대형 디젤기관에서 매연가스 예측에 관한 연구)

  • Baik, Doo-Sung;Lee, Jong-Sun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.9 no.4
    • /
    • pp.865-870
    • /
    • 2008
  • The effects of exhaust gas recirculation (ECR) on smoke emissions in heavy duty diesel engine are numerically studied by using KIVA-3V CFD code. For the analysis, RNG k-$\varepsilon$ turbulence model was given as a governing equation, and mathematical models of Tab, Wave, Watkins-Park, Nagle-Strikland were applied to describe physical process of droplet breakup, atomization, wall impingement and smoke respectively.

Prediction of the internal flow in a pintle nozzle for LPG engine (LPG 엔진용 고압 핀틀노즐 내부유동 수치해석)

  • Jeong, Hong-Cheol;Kim, Byeong-Cheol
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.8
    • /
    • pp.1077-1085
    • /
    • 1997
  • The use of "clean fuels" such as butane, propane, and mixtures of these (LPG) is an attractive way to reduce exhaust emissions. In this study internal flow of the pintle type injector for LPG engine is studied. The breakup of liquid jet is the result of competing, unstable hydrodynamic forces acting on the liquid jet as it exits the nozzle. The nozzle geometry and up-stream injection conditions affect the characteristics of flow inside the nozzle, such as turbulence and cavitation bubbles. A set of calculations of the internal flow in a pintle type nozzle were performed using a two dimensional flow simulation under different nozzle geometry and upstream flow conditions. The calculation showed that the turbulent intensity and discharge coefficient are related to needle leading angle(.alpha.) and needle lift.edle lift.