• Title/Summary/Keyword: Turbulence Flow

Search Result 2,256, Processing Time 0.039 seconds

A Study on the Effect of Turbulent Combustion upon Soot Formation in Premixed Constant-Volume Propane Flames (정적 예혼합 프로판 화염의 매연생성에 미치는 난류연소 영향에 관한 연구)

  • 배명환;안수환
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.27 no.7
    • /
    • pp.889-898
    • /
    • 2003
  • The soot yield is studied by a premixed propane-oxygen-inert gas combustion in a specially designed disk-type constant-volume combustion chamber to investigate the effect of turbulence on soot formation. Premixtures are simultaneously ignited by eight spark plugs located on the circumference of chamber at 45 degree intervals in order to observe the soot formation under high pressures and high temperatures. The eight flames converged compress the end gases to a high pressure. The laser schlieren and direct flame photographs for observation field with 10 mm in diameter are taken to examine into the behaviors of flame front and gas flow in laminar and turbulent combustion. The soot volume fraction in the chamber center during the final stage of combustion at the highest pressure is measured by the in situ laser extinction technique and simultaneously the corresponding burnt gas temperature by the two-color pyrometry method. It is found that the soot yield of turbulent combustion decreases in comparison with that of laminar combustion because the burnt gas temperature increases with the drop of heat loss.

Modeling of Combustion in Co-Generation / Industrial Boiler Furnace (열병합/산업용 보일러 화로에서의 연소 해석)

  • Kim, Byoung-Yun;Park, Pu-Min;Lee, Kyoung-Mo
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.842-846
    • /
    • 2001
  • Our company produces boilers for industrial usages or power plants. The aim of this study is to investigate the flame structure, heat transfer to evaporator tube wall and NOx emission in the furnaces. Also we are to derive correct FEGT(Furnace Exit Gas Temperature) characteristic curve. When we design furnace and superheater, economizer etc. FEGT characteristic curve is very important factor for optimum design. We calculated turbulent reacting flow, heat transfer and NOx emission in furnace by using numerical modeling with the help of commercial code. Three dimensional steady state calculation is done. k-e turbulence model and equilibrium chemistry combustion model with $\beta-probability$ density function is used. To calculate radiation heat transfer discrete ordinates model is used. And we measured FEGT at several operating plants. Measurement is done by R-type thermocouple. Radiation shield is attached to the thermocouple to prevent radiation effect. Measured and calculated results show good agreement. And we could understand the flame structure and NOx formation positions in each furnaces.

  • PDF

CFD Analysis of Marine Propeller-Hub Vortex Control Device Interaction (프로펠러와 허브 보오텍스 조절장치 상호작용 CFD 해석)

  • Park, Hyun-Jung;Kim, Ki-Sup;Suh, Sung_Bu;Park, Ill-Ryong
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.53 no.4
    • /
    • pp.266-274
    • /
    • 2016
  • Many researchers have been trying to improve the propulsion efficiency of a propeller. In this study, the numerical analysis is carried out for the POW(Propeller Open Water test) performance of a propeller equipped with an energy saving device called PHVC(Propeller Hub Vortex Control). PHVC is aimed to control the propeller hub vortex behind the propeller so that the rotational kinetic energy loss can be reduced. The unsteady Reynolds Averaged Navier-Stokes(URANS) equations are assumed as the governing flow equations and are solved by using a commercial CFD(Computational Fluid Dynamics) software, where SST k-ω model is selected for turbulence closure. The computed characteristic values, thrust, torque and propulsion efficiency coefficients for the target propeller with and without PHVC and the local flows in the propeller wake region are validated by the model test results of KRISO LCT(Large Cavitation Tunnel). It is concluded from the present numerical results that CFD can be a good promising method in the assessment of the hydrodynamic performance of PHVC in the design stage.

Numerical Analysis of the Drag of Conical Cavitators (원뿔 캐비테이터의 항력에 대한 수치해석)

  • Kim, Hyoung-Tae;Lee, Hyun-Bae;Cho, Jung-Kyu
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.52 no.4
    • /
    • pp.305-314
    • /
    • 2015
  • In this paper, a numerical analysis is carried out to study the drag of conical cavitators, supercavity generation devices for the high-speed underwater vehicle. The realizable k-∊ turbulence model and the Schnerr-Sauer cavitation model are applied to calculate steady-state supercavitating flows around cones of various cone angles. The calculated drags of the cones are decomposed of the pressure and the friction parts and their dependency on the geometry and the flow conditions have been analyzed. It is confirmed that the pressure drag coefficients of the cones can be estimated by a simple function of both the cone angle and the cavitation number while the friction drag coefficients approximately by well-known empirical formulas, e.g., Schults-Grunow's for the drag of the flat plate. Finally a practical method for estimating the total drags of supercavitating cones is suggested, which can be useful consequently for the design of conical cavitaors.

Numerical simulation of tip clearance impact on a pumpjet propulsor

  • Lu, Lin;Pan, Guang;Wei, Jing;Pan, Yipeng
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.8 no.3
    • /
    • pp.219-227
    • /
    • 2016
  • Numerical simulation based on the Reynolds Averaged Naviere-Stokes (RANS) Computational Fluid Dynamics (CFD) method had been carried out with the commercial code ANSYS CFX. The structured grid and SST $k-{\omega}$ turbulence model had been adopted. The impact of non-condensable gas (NCG) on cavitation performance had been introduced into the Schnerr and Sauer cavitation model. The numerical investigation of cavitating flow of marine propeller E779A was carried out with different advance ratios and cavitation numbers to verify the numerical simulation method. Tip clearance effects on the performance of pumpjet propulsor had been investigated. Results showed that the structure and characteristics of the tip leakage vortex and the efficiency of the propulsor dropped more sharply with the increase of the tip clearance size. Furthermore, the numerical simulation of tip clearance cavitation of pumpjet propulsor had been presented with different rotational speed and tip clearance size. The mechanism of tip clearance cavitation causing a further loss of the efficiency had been studied. The influence of rotational speed and tip clearance size on tip clearance cavitation had been investigated.

Evaluation of Course Stability Performance for Tanker using CFD (CFD를 이용한 Tanker의 침로안정성 평가)

  • Hong, Chun-Beom;Yang, Hee-Jun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.45 no.5
    • /
    • pp.523-529
    • /
    • 2008
  • The course stability performance for tankers is evaluated by computational fluid dynamics. In the present work, a Reynolds averaged Navier-Stokes (RANS) code is applied to a maneuvering problem covering the pure drift and yaw motions. The purposes of this study are to evaluate the hydrodynamic force in the bare hull (AFRAMAX) in pure drift and yaw motion and to provide information about the trends in the forces and moments when the rudder angles are varied. The flow simulation is performed by FLUENT. The CFD code is examined to find the optimistic computational condition such as size of grid, turbulence model and initial condition. The hydrodynamic derivatives in drift and pure yaw motion are estimated by the numerical simulation, and then the stability levers are calculated. It is confirmed that the computations show the superiority and inferiority of course stability performance according to the hull forms. Finally, the CFD code is applied to the estimation of the rudder forces when the rudder angles are varied. The propeller effect expressed by the body force distribution is also included.

A study on the Development of Vertical Air Temperature Distribution Model in Atrium (아트리움의 수직온도 분포해석 프로그램의 개발에 관한 연구)

  • Kim, Y.I.;Cho, K.H.;Kim, K.W.
    • Solar Energy
    • /
    • v.17 no.3
    • /
    • pp.3-11
    • /
    • 1997
  • Recently the construction of atrium buildings has increased but along with it many problems in thermal environment have arised. since the exterior wall of glass, indoor temperature is greatly influenced by weather conditions and since the space volume is very large, the vertical air temperature is not uniform. So, in this study, a Vertical Temperature Distribution Model was developed to predict the vertical air temperature of an atrium and evaluate the effects of the design parameters on the air temperature distribution of an atrium. To consider the characteristics of the vertical air temperature distribution in an atrium, the Satosh Togari's Macroscopic Model was used basically for the calculation of the vertical air temperature distribution in large space and the solar radiation analysis model and natural ventilation analysis model in atrium. And to calculate the unsteady-state inside wall surface temperature(boundary condition), the finite difference method was used. For the verification of the developed temperature distribution program, numerical evaluation of air flow by the ${\kappa}-{\varepsilon}$ turbulence model and in-situ test was conducted in parallel. The results of this study, the developed temperature distribution program was seen to predict the thermal condition of the atrium very accurately.

  • PDF

Numerical Study for Configuration Design in the Exhaust Gas Cooling System (배출가스 냉각장치 형상설계를 위한 수치해석)

  • Lee, Suk Young
    • Journal of Energy Engineering
    • /
    • v.25 no.4
    • /
    • pp.7-12
    • /
    • 2016
  • This paper deals with a parametric study on cooling channel configurations to enhance the cooling effect. As a cooling effect has been increased, the exhaust gas by the plant from a manufacture is becoming deceased. To solve this problem, the design of a efficient cooling system is needed. In this paper, the cooling channel was analyzed to improve the cooling performance. The heat transfer rates depending on the number of baffle and the heiht of fin were obtained by using numerical simulation method. Three-dimensional Reynolds-averaged Naiver-Stokes equations were used to estimate flow and heat transfer in cooling channel, and the $k-{\varepsilon}$ model for turbulence closure was employed.

Flow-induced Vibration Analysis of Bridge Girder Section (교량 구조물의 유체유발 진동해석)

  • Park, Seong-Jong;Kwon, Hyuk-Jun;Lee, In;Han, Jae-Heung
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.5
    • /
    • pp.402-409
    • /
    • 2004
  • Numerical analysis of static and dynamic wind effects on civil engineering structures was performed. Long-span suspension bridges are flexible structures that are highly sensitive to the action of the wind. Aerodynamic effect often becomes a governing factor in the design process of bridges and aeroelastic stability boundary becomes a prime criterion which should be confirmed during the structural design stage of bridges because the long-span suspension bridges are prone to the aerodynamic instabilities caused by wind. If the wind velocity exceeds the critical velocity that the bridge can withstand, then the bridge fails due to the phenomenon of flutter. Buffeting caused by turbulence results in structural fatigue, which could lead to the failure of a bridge. Navier-Stokes equations are used for the aeroelastic analysis of bridge girder section. The aeroelastic simulation is carried out to study the aeroelastic stability of bridges using both Computational Fluid Dynamic (CFD) and Computational Structural Dynamic (CSD) schemes.

Selection of Measurement Locations at Inner Barrel Assembly Top Plate in the Reactor (원자로 내부배럴집합체 상부면 측정위치 선정)

  • Ko, Do-Young;Kim, Kyu-Hyung;Kim, Sung-Hwan
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2012.04a
    • /
    • pp.734-738
    • /
    • 2012
  • A comprehensive vibration assessment program for the Advanced Power Reactor 1400 reactor vessel internals is established in accordance with the United States Nuclear Regulatory Commission Regulatory Guide 1.20 Revision 3. This paper is related to instruments and measurement locations based on the vibration and stress response analysis results at the inner barrel assembly top plate in the reactor. The analysis results of the inner barrel assembly top plate in the reactor show that the deterministic stress and deformation due to the reactor coolant pump induced pressure pulsations are larger than the random stress and deformation induced by the flow turbulence. The selection of the instruments and measurement locations at Inner barrel assembly top plate in the reactor is essential requirements and very important study process for the vibration and stress measurement program in comprehensive vibration assessment program for the Advanced Power Reactor 1400 reactor vessel internals.

  • PDF