• Title/Summary/Keyword: Turbopump(터보펌프)

Search Result 265, Processing Time 0.025 seconds

A Study on the Development Process of the Liquid Rocket Engine for the Upper Stage of the Korea Space Launch Vehicle-II (한국형발사체 상단 액체로켓엔진의 개발과정에 대한 고찰)

  • Seo, Kyoun-Su;Park, Soon-Young;Nam, Chang-Ho;Moon, Yoonwan
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.26 no.1
    • /
    • pp.68-76
    • /
    • 2022
  • Upper stage of the Korea Space Launch Vehicle-II(KSLV-II) uses a 7-tons class liquid rocket engine and is an open gas generator cycle with a turbopump supply method that uses kerosene/liquid oxygen as the propellant combination. This study first provided a brief overview of the design and development process of the upper stage engine. In addition, it introduced the solutions and results applied to some of the problems that occurred during the development process of the upper stage engine.

Optimal Design and Combustion Analysis of Fuel-rich Gas Generator for Liquid Rocket Engine Based on RP-1 fuel (RP-1연료를 사용한 농후연소 가스발생기의 최적설계 및 연소해석)

  • 권순탁;이창진
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2003.05a
    • /
    • pp.258-261
    • /
    • 2003
  • The optimal design and combustion analysis of the gas generator for Liquid Rocket Engine (LRE) were performed. A fuel-rich gas generator in open cycle turbopump system was designed for 101on1 in thrust with RP-1/LOx combination. The optimal design was done for maximizing specific impulse of main combustion chamber with constraints of combustion temperature and power matching in turbopump system. Results of optimal design show the dimension of length, diameter, and contraction ratio of gas generator. The configuration of the gas generator and the condition for performance which can maximize the objective function were determined and found to meet the design constraints. Also, the combustion analysis was conducted to evaluate the performance of designed chamber and injector of gas generator. And the effect of the turbulence ring was investigated on the mixing enhancement in the chamber.

  • PDF

Prediction of Startup Characteristic for 30 tonf Liquid Rocket Engine TP-GG-CC Coupled Test (30톤급 액체엔진 TP-GG-CC 연계시험에서 시동특성예측)

  • Moon, Yoon-Wan;Kim, Seung-Han;Kim, Chul-Woong;Seol, Woo-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.62-65
    • /
    • 2009
  • This study for prediction of startup characteristics for 30 tonf liquid rocket engine TP-GG-CC coupled test was performed on the basis of the previous TP-GG test and prediction results. For determining the valve sequence the startup analysis was performed by the specified program for several main valve time and the adequate valve sequence for startup could be obtained.

  • PDF

Simulator Development for Startup Analysis of Staged Combustion Cycle Engine Powerpack (다단연소사이클 엔진 파워팩 시동 해석 시뮬레이터 개발)

  • Lee, Suji;Moon, Insang
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.19 no.5
    • /
    • pp.62-70
    • /
    • 2015
  • A liquid rocket engine system can cause rapid pressure and temperature variations during the startup period. Thus the startup analysis is required to reduce time and expense for successful development of liquid rocket engine through the startup prediction. In this study, a startup analysis simulator is developed for a staged combustion cycle engine powerpack. This simulator calculates propellant flow rates using pressure and flow rate balances. In addition, a rotational speed of turbopump is obtained as a function of time by mathematical modeling. A startup analysis result shows that the time to reach a steady-state and a rotational speed at the steady-state are 1.3 sec and 27,500 rpm, respectively. Moreover it can indicate proper startup sequences for stable operation.

Study on the Experiment of the Floating Ring Seal with Bump Foil for High Pressure Turbopump (범프 포일을 장착한 고압 터보펌프용 플로팅 링 실의 실험에 관한 연구)

  • Kim Kyoung-Wook;Kim Chang-Ho;Ahn Kyoung-Min;Lee Sung-Chul;Lee Yong-Bok
    • Tribology and Lubricants
    • /
    • v.22 no.2
    • /
    • pp.105-111
    • /
    • 2006
  • The floating ring seal which is used in the high pressure turbo pump is frequently used in the oxidizer pump and the fuel pump of the turbo pump of the liquid propulsion rocket, because it is able to minimize clearance to decrease the leakage flow rate. Compared with contact seal, the floating ring seal has advantage of minimizing clearance without rubbing phenomenon. But, the floating ring seal has a tendency to increase instability in operating condition in the high speed region. In this research, we devised floating ring seal which is inserted bump in the outer surface in order to improve the stability in the high speed region. Through this work, we expect to improve stability of floating ring seal with increasing the direct damping coefficient of seal and decreasing the eccentricity ratio.

Perspective of Technology for Liquid Rocket Engines (액체로켓엔진 기술 전망)

  • Cho, Won Kook;Ha, Sung Up;Moon, Insang;Jung, Eun Whan;Kim, Jin Han
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.8
    • /
    • pp.675-685
    • /
    • 2016
  • A research area on liquid rocket engine has been suggested. Downsizing through combustion pressure rise and low price are major issues to gas generator cycle engines. A very high pressure turbopump and material against oxidizer rich environment may be necessary technologies for staged combustion cycle engines. Integrated analysis saving computing time is the trend of rocket engine systems analysis area. Other important research topics are the methane engine for reusable booster to reduce the cost, 3D printing and materials for high temperature or oxidizer rich environment.

Development of a Liquid Rocket Engine Fuel-Rich Gas Generator (액체로켓용 연료 과농 가스발생기 개발)

  • Seo, Seong-Hyeon;Ahn, Kyu-Bok;Lim, Byoung-Jik;Kim, Jong-Gyu;Lee, Kwang-Jin;Han, Yeoung-Min;Ryu, Chul-Sung;Kim, Hong-Jip;Choi, Hwan-Seok
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.11 no.4
    • /
    • pp.38-45
    • /
    • 2007
  • A liquid rocket engine fuel-rich gas generator has been developed for the first time in the country, which can produce combustion gas over the rate of 4 kg/s at 900 K and 58 bar. The gas is not only for driving a turbopump but also for providing heat source for propellant supply tanks. The final design of the gas generator had been fixed based on the concept and preliminary development tests, and was validated through structure and heat transfer analysis. The manufacturing involved precision machining, surface finish, and special welding technique. The final assessment on the characteristics of ignition and combustion had been carried out for two different versions of injector heads. This concluded that the present product satisfies the development requirements such as spatial temperature distribution and the development has been successful.

Development of a Liquid Rocket Engine Fuel-Rich Gas Generator (액체로켓용 연료 과농 가스발생기 개발)

  • Seo, Seong-Hyeon;Ahn, Kyu-Bok;Lim, Byoung-Jik;Kim, Jong-Gyu;Lee, Kwang-Jin;Moon, Il-Yoon;Han, Yeoung-Min;Ryu, Chul-Sung;Kim, Hong-Jip;Choi, Hwan-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.181-185
    • /
    • 2006
  • A liquid rocket fuel-rich gas generator developed for the first time in the country can produce combustion gas over the rate of 4 kg/s at 900 K and 58 bar. The gas can be used not only for driving a turbopump but also for providing heat source for propellant supply tanks. The final design of the gas generator has been fixed based on the concept and preliminary development tests, and was validated through structure and heat transfer analysis. The manufacturing involves precision machining, special surface finish, and welding techniques. The final assessment on the characteristics of ignition and combustion had been carried out through five combustion tests. This concluded that the present product satisfies the development requirements.

  • PDF

Performance Characteristics of Velocity Compound Supersonic Impulse Turbine with the Rotor Overlaps (속도 복합형 초음속 충동형 터빈의 동익 오버랩에 따른 성능특성)

  • Cho, Jong-Jae;Kim, Kui-Soon;Jeong, Eun-Hwan
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.15 no.1
    • /
    • pp.19-28
    • /
    • 2011
  • As a preview study, present research analysed the performance characteristics of a velocity compound supersonic impulse turbine with the rotor overlaps before adapting the overlap has the best turbine performance. This research was conducted for the turbine with square cross-section nozzles instead of axisymmetric nozzles and wrap around nozzles. Through 3-dimensional flow analysis for the turbine by a commercial flow analysis package, tip overlap case was more effective to improve the turbine performance than case hub overlap, and overlap case applied the hub and tip of the rotor had the largest improvement for the turbine performance in the cases. In case of overlap for the 2nd stage rotor, improvement of the turbine performance was not visibly large. Because, generated power in the 2nd stage is 22~23% of whole generated turbine power.

Numerical Analysis on the Startup of a Rocket Engine (로켓 엔진의 시동에 관한 해석적 연구)

  • Park, Soon-Young;Seol, Woo-Seok
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.11 no.5
    • /
    • pp.60-71
    • /
    • 2007
  • The startup characteristic of liquid propellant rocket engine should be focused on the stable ignition of combustion chamber and gas generator. Also, to lessen the propellants consumption during this period which doesn't contribute to the flight thrust, the engine has to be transferred to the nominal mode quickly. Because of the risk of test, it is impossible to develop all the startup cyclogram or the specifications of engine by test, so the precedent numerical approach is quite necessary. In this study we developed a mathematical model for the startup phenomena in a liquid rocket engine driven by gas generator-turbopump system based on the commercial 1-D flow system analysis program, Flowmaster. Using this program we proposed a methodology to obtain the specifications of turbine starter and the opening time of shutoff valves for the stable startup of the engine. To verify this methodology we qualitatively compared the analysis results to the typical startup curve of the published engine, then found it is quite well matched.