• 제목/요약/키워드: Turbo-charger diesel engine

검색결과 18건 처리시간 0.027초

승용차의 부분부하제어를 위한 스크류형 과급기 개발 (Development of a Screw Type Super-Charger for Part Load Control of Passenger Car)

  • 배재일;배신철
    • 대한기계학회논문집B
    • /
    • 제27권10호
    • /
    • pp.1427-1434
    • /
    • 2003
  • Turbo- or Super-charging has been used to boost engine power for Gasoline- and Diesel Engine since beginning of 20th century. So far turbo-charger has enjoyed a high reputation in the charging field for its technical advantages such as no demand of operation power from engine and an excellent charging effect in a static operation at mid- and high engine speed. A mechanically driven super-charger, however, is now popular due to the high engine power at quick change of the driving mode - high engine torque even at low engine speed. Since super-charger needs operation power from engine, it is difficult to improve its relatively higher fuel consumption than that of turbo-charger. This negative point is still an obstacle to the wide use of supercharger. Super-charger using screw-type compressor will fulfill the purpose to reduce fuel consumption by minimizing operation power owing to no charge at idling or part load driving condition. This study aims to develop power control concept to achieve the minimization of operation power. A screw type super-charger was modified in design partially and installed with an internal bypass valve and a bypass tube to control charging pressure at part load. The various control concepts show a possibility to reduce operation power of super-charger.

부분부하제어를 위한 스크류형 과급기 개발 (Development of a screw type super-charger for part load control)

  • 배재일;배신철
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 추계학술대회논문집B
    • /
    • pp.353-358
    • /
    • 2001
  • Turbo-charging or Super-charging has been used to boost engine power for Gasoline Engine and Diesel Engine came to the world at the beginning of $20^{th}$ century. So far Turbo-Charger has enjoyed a high reputation in the charging filed for its technical advantages such as no demand of operation power from engine and an excellent charging effect in the event of a static operation at mid- and high engine speed. A mechanically driven Super-Charger, however, is now emerging in order to meet demands of the age of speed such as high engine power for a quick change of the driving mode - high engine torque even at low engine speed. Since Super-Charger needs driving power from engine, it cannot improve its relatively higher fuel consumption against that of Turbo-Charger. This negative point is still an obstacle to the wide use of Super-Charger. Super-Charger using Screw-type compressor which has already had a considerable base in air compressor market will fulfill this purpose of improving fuel consumption by minimizing operation power owing to no charging at idling or partially loading driving. This study aims to develop power control concept to achieve this minimization of operation power.

  • PDF

직접 디젤 연료분사계의 분사 특성과 기관 성능 개선에 관한 연구 (Injection Feature and Engine Performance Improvement of the Direct Diesel Fuel Injection System)

  • 윤천한;김경훈
    • 한국분무공학회지
    • /
    • 제7권1호
    • /
    • pp.1-6
    • /
    • 2002
  • This study has focused on using fuel injections as variables for measuring performance and reducing exhaust gas in turbo-charger diesel engine. In experiments, we changed nozzle hole diameter, diameter of an injection pipe, and injection timing as variable. The results show that torque. fuel consumption and smoke are reduced as nozzle hole diameter decreases, while NOx increases. When the diameter of injector is reduced, torque, fuel consumption and smoke are deteriorated, but NOx is decreased. In addition, when the time for injection is advanced. torque, fuel consumption and smoke are improved, but the density of NOx is increased.

  • PDF

스털링 사이클을 기본으로 하는 과급 CI 엔진의 기초 성능 분석 (A Basic Analysis of Performance of Turbo CI Engine based on Stirling Cycle)

  • 배종욱
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제24권5호
    • /
    • pp.76-85
    • /
    • 2000
  • Stirling cycle was actualized as so called ‘hot air engine’. It has been focused again lately as one of measures for exhaust gas emission problem, but as small power engine because of its method of heat addition. Recently marine power plants commenced to meet a stringent environmental restrictions by international convention, Marpol so that diesel engines as main and auxiliarly power plants are urged to be reformed to reduce NOx emission. Author devised a compression ignition engine as a large marine power plants combined with turbo charger based on stirling cycle, and analyzed the performance by means of basic thermodynamic calculation. Analyzed in this paper, were theoretical efficiency, mean effective pressure, required equivalence ratio, gas turbine power ratio, maximum pressure, states of turbo-charger inlet gas and exhaust gas, manifesting that the engine could be proposed as one of the future power plants of marine use.

  • PDF

터보 차져 디젤 엔진에서의 기류음 감소를 위한 연구 (A study on the reduction of the flow-induced noise in turbo-charger diesel engines)

  • 강웅;김형진;성형진
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회B
    • /
    • pp.2913-2917
    • /
    • 2007
  • Turbocharger has been widely used in many passenger cars in application with diesel engines because of high power and fuel efficiency. However, flow-induced noise (whoosh or hissing noise) which is generated within the compressor during its operation at marginal surge line can deteriorate noise characteristics. Hissing noise excitation was associated with the generation of turbulence within the turbocharger compressor and radiated through the transmission path in turbocharger system. In this study, a sharp-edged reactive-type muffler was devised and installed in the transmission path to reduce the hissing noise. Acoustic and fluid dynamic characteristics for the muffler were investigated which is related to the unsteadiness of turbulence and pressure in turbocharger system. A transfer matrix method was used to analyze the transmission loss of the muffler. Simple expansion muffler with extended tube of the reactive type is proposed for the reduction of high frequency component noise. Turbulence computation was carried out by a standard ${\kappa}-{\varepsilon}$ model. An optimal design condition of the muffler was obtained by extensive acoustic and fluid dynamic analysis on the engine dynamometer with anechoic chamber. A significant reduction of the hissing noise was achieved at the optimal design of the muffler as compared with the conventional turbocharger system.

  • PDF

조합형 소음기를 이용한 육상발전용 디젤 엔진의 흡기 소음 제어 (Intake Noise Control of Diesel Power Plant using Combined Silencer)

  • 송근복;주원호;김동해
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2012년도 춘계학술대회 논문집
    • /
    • pp.861-866
    • /
    • 2012
  • Turbo-charger noise radiated from air intake part is one of the most important noise sources in diesel power plant. In this paper, intake noise control of the diesel power plant was studied using parallel baffle type silencer and concentric hole-cavity resonator simultaneously. Firstly, acoustical characteristics and attenuation performance for parallel baffle type silencer were investigated through theoretical approach and experimental method. Based on the results, optimal design of the parallel baffle silencer was suggested. Secondly, for reducing the low frequency noise contained in the intake noise, the concentric hole-type resonator was developed and the acoustic performance was verified from the test. By combining two types of silencers, it is expected that the overall insertion loss is about 50 dB. So, the combined silencer is very helpful in reducing the intake noise of diesel power plant.

  • PDF

소형선박용 배기가스 후처리장치에 관한 연구 (A Study on the Exhaust Gas After Treatment for Small Ship)

  • 이중섭;이치우
    • 한국기계가공학회지
    • /
    • 제16권3호
    • /
    • pp.76-81
    • /
    • 2017
  • In this research, to cope with the exhaust being reviewed to establish legal regulations for domestic small vessels, a basic experiment on an exhaust emissions post-treatment system was conducted to construct the design data required for securing a localized technology. The data was secured based on the arithmetic mean calculated through setting the engine load to 25%, 50%, and 75% and conducting five. A 2800-cc turbo charger diesel-type engine was used in the experiment, and an engine dynamometer was used in the conducted tests. As a result, NOx was reduced by approximately 20% and PM was reduced by approximately 97%. Although the results indicated no significant changes to CO in test mode-1, it was greatly reduced as it transitioned into the next phase.

터보 차져와 인터쿨러를 장착한 디젤기관의 시뮬레이션 연구 (A Simulation Study of Diesel Engine with Trubocharger and Intercooler)

  • 한영출
    • 한국생산제조학회지
    • /
    • 제9권4호
    • /
    • pp.123-130
    • /
    • 2000
  • Studies on the turbocharger itself or various aspects generated from turbocharged engine have been made on the performance for the natural aspirated engine equipped with the turbocharger and the intercooler. In this study, the performance prediction program based on turbocharger theory is developed for simulation which may reduced the cost and the trial -and-error time. The program is verified with the experimental results for 11, 000 cc diesel engine with the turbocharger and the intercooler . Also, various factors which are invisible in experiment are predicted using this program.

  • PDF

대형 디젤 엔진의 연비 향상을 위한 Miller Cam 평가 (Evaluation on a Miller Cam for Improving the Fuel Consumption of a Large Diesel Engine)

  • 송창훈;왕태중;임희준
    • 한국자동차공학회논문집
    • /
    • 제24권1호
    • /
    • pp.47-52
    • /
    • 2016
  • Miller timing is one of the promising ways which can improve the fuel consumption of internal combustion engines. Indeed, Miller timing employing an early intake valve close is widely applied to large diesel and gas engines to enhance performance and reduce NOx emissions. In this study, performance evaluation is carried out by 1-D cycle simulation in order to estimate the effect of Miller CAM timing before BDC for a 32 L turbocharged diesel engine. To optimize Miller CAM timing, a single stage turbocharger is matched with an early intake valve close since boost pressure is a significant parameter that can control compression work in a turbocharged engine. The engine simulation result shows that there is enough potential to improve fuel consumption rate and also reduce NOx emissions at the same time.Abstract here.

V8형 터보차져 인터쿨러 직접분사식 디젤기관의 성능개설에 관한 연구 (A Study on the Performance Improvement in a V8 Type Turbocharged Intercooler D.I. Diesel Engine)

  • 석동현;윤준규;차경옥
    • 에너지공학
    • /
    • 제13권2호
    • /
    • pp.118-127
    • /
    • 2004
  • 본 연구는 배기량이 16.7ι인 V8형 터보차져 인터쿨러 직접분사식 디젤기관에서 흡기포트의 선회유동과 연료분사계 및 과급기가 기관성능 및 배출가스특성에 미치는 영향을 실험적으로 고찰하며 성능을 개선하는데 있다. 일반적으로 기관의 출력을 높이기 위하여 과급기 및 인터쿨러를 장착하여 과급공기를 냉각시켜 과급효율을 더욱 높인 TCI디젤기관이 보편화되고 있다 본 연구의 결과로서 흡기포트의 선회비가 2.25인 경우에서 압축비 17.5, re-entrant 8.5$^{\circ}$ 형 연소실, 노즐분공경 $\Phi$0.33*3+$\Phi$0.35*2, 노즐돌출량 3.18mm, 분사시기 BTDC 12$^{\circ}$CA, 과급기 T042(압축기 0.6A/R+46Trim, 터빈 1.0A/R+57Trim)경우가 기관성능 및 NO$_{x}$ 농도의 배출특성을 고려할 때 운전영역에서 가장 우수하여 흡기포트, 분사계 및 과급기에 대한 각 인자를 적정화할 수 있었다.