• Title/Summary/Keyword: Turbo-C tube

Search Result 22, Processing Time 0.027 seconds

Condensation heat transfer characteristics of alternative refrigerants for CFC-11, CFC-12 for enhanced tubes (열전달 촉진관에서 CFC-11 및 CFC-12 대체냉매의 응축 열전달 특성 연구)

  • 조성준;황수민;정동수;김종보
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.10 no.5
    • /
    • pp.569-580
    • /
    • 1998
  • In this study, condensation heat transfer coefficients(HTCs) of a plain tube, low fin tube, and Turbo-C enhanced tube for CFC-11, HCFC-123, CFC-12, HFC-l34a are measured and compared against each other. All data are taken at the vapor temperature of 39$^{\circ}C$ with a wall subcooling temperature 3~8$^{\circ}C$. Test results show that HTCs of a low vapor pressure refrigerant, HFC-123, for a plain, low fin, and Turbo-C tubes are 10.5~20.5%, 8.2~12.2%, 16.5~19.2% lower than those of CFC-11, respectively. On the other hand, HTCs of a medium vapor refrigerant, HFC-l34a, for a plain, low fin, and Turbo-C tubes are 20.6~31.8%, 0.0~8.0%, 13.2~20.9% higher than those of CFC-12, respectively. For all refrigerants tested, HTCs of Turbo-C tube are the highest among the three tubes showing almost 8 times increase in HTCs as compared to those of a plain tube. Nusselt's prediction equation for a plain tube yielded 12% deviation for all plain tube data while Realty and Katz's prediction equation for a low fin tube yielded 20% deviation for all low tube data.

  • PDF

External Condensation Heat Transfer Coefficients of R245fa on Low Fin and Turbo-C Tubes (낮은 핀관과 Turbo-C 촉진관에서 R245fa의 외부 응축 열전달계수)

  • Shim, Yun-Bo;Park, Ki-Jung;Jung, Dong-Soo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.21 no.3
    • /
    • pp.167-175
    • /
    • 2009
  • In this study, condensation heat transfer coefficients(HTCs) of R22, R123, R134a and R245fa are measured on both 26fpi low fin and Turbo-C tubes. All data are taken at the vapor temperature of $39^{\circ}C$ with a wall subcooling of $3{\sim}8^{\circ}C$. Test results show that HTCs of the newly developed low vapor pressure alternative refrigerant, R245fa, are $7.8{\sim}9.2%$ and $10.3{\sim}18.6%$ higher than those of R123 for 26fpi low fin tube and Turbo-C tube respectively. For all refrigerants tested, HTCs of Turbo-C enhanced tube are higher than those of 26fpi low fin tube. For the low fin tube, Beatty and Katz's prediction equation yielded 20% deviation for all fluids. The heat transfer enhancement ratio of R245fa on the Turbo-C tube is $5.9{\sim}6.4$ while that of R123 is $5.7{\sim}5.9$. From the view point of environmental safety and condensation heat transfer, R245fa is a long term candidate to replace R123 currently used in centrifugal chillers.

A Study of External Condensation Heat Transfer of Flammable Refrigerants (가연성 냉매의 외부 응축 열전달에 관한 연구)

  • 배동수;하종철;유길상;정동수
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.6
    • /
    • pp.522-529
    • /
    • 2004
  • In this study, external condensation heat transfer coefficients (HTCs) of flammable refrigerants of propylene, propane, isobutane, butane, DME, and HFC32 were measured on a horizontal plain tube, 26 fpi low fin tube, and Turbo-C tube. All data were taken at the temperature of 39$^{\circ}C$ with a wall subcooling of 3∼8$^{\circ}C$. Test results showed a typical trend that condensation HTCs of flammable refrigerants decrease with increasing wall subcooling. HFC32 had the highest HTCs among the tested refrigerants showing 44% higher HTCs than those of HCFC22 while DME showed 28% higher HTCs than those of HCFC22. HTCs of propylene and butane were similar to those of HCFC22 while those of propane and isobutane were similar to those of HFC134a. Based upon the tested data, Nusselt's equation is modified to predict the plain tube data within a deviation of 3%. For 26 fpi low fin tube, Beatty and Katz equation predicted the data within a deviation of 7.3% for all flammable refrigerants tested. The heat transfer enhancement factors for the 26 fpi low fin and Turbo-C tubes were 4.6∼5.7 and 4.7∼6.9 respectively for the refrigerants tested indicating that the performance of Turbo-C tube is the best among the tubes tested.

An Experimental Study on the Performance Characteristics of the Vortex Tube for Substitution of the Intercooler in a Common-rail Diesel Engine (커먼레일 디젤기관의 인터쿨러 대체용 볼텍스 튜브 장치의 성능특성에 관한 실험 연구)

  • Im, Seok-Yeon;Choi, Doo-Seuk;Ryu, Jeong-In
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.3
    • /
    • pp.172-178
    • /
    • 2008
  • An object of this study is to confirm performance characteristics of the vortex tube apparatus for substitution of the intercooler in a common-rail diesel engine. The turbo pressure, the intake air flow rate and the ${\Delta}T_c$ decrease ratio of the intercooler were measured in a experimental engine. The vortex tube apparatus was made after confirmation of the geometric phenomena in fundamental experiments. To investigate energy separation characteristics of the vortex tube, the measured turbo pressure was applied to the vortex tube inlet and the ${\Delta}T_c$ decrease ratio was compared with one of the intercooler in the cold air mass flow ratio similar to the intake air flow rate of the experimental engine. From the results, we found that the energy separation ratio is increased according to of the inlet pressure and the ${\Delta}T_c$ decrease ratio of the vortex tube apparatus is higher than one of the intercooler at low engine speed and engine load of medium and low.

Study on Heat Transfer Coefficient Test of Evaporator Tube in Shell and Tube Heat Exchanger by Shape (관 형태에 따른 Shell and Tube 열교환기의 열전달계수 관한 연구)

  • Kwon, Jae-Jeong;Park, Jae-Hong;Kim, In-Kwan;Kim, Young-Soo
    • Proceedings of the SAREK Conference
    • /
    • 2006.06a
    • /
    • pp.1107-1112
    • /
    • 2006
  • The purpose of this study is a heat transfer coefficient test of evaporator tube in shell and tube heat exchanger by shapes, using R-404A. The experimental apparatus is designed to simulate the real heat transfer rate in one shell and tube heat exchanger. The test section is formed four type tubes that are Inner ridged tube, Corrugated tube, Turbo-C tube, Inner fin tube and shell type is formed by electrical heater. All tests were performed at a fixed refrigerant evaporator temperature at $1.5^{\circ}C,\;-3^{\circ}C$ and with mass fluxes of 29, 25 kg/hr. Heat transfer rate is calculated a enthalpy difference in test section. In experiment, heat transfer coefficient measured one by one and electrical heaters are supplemented by evaporator.

  • PDF

External Condensation Heat Transfer Coefficients of R22 Alternative Refrigerants and R134a According to the Saturated Vapor Temperature Change on an Enhanced Tube (열전달 촉진관에서 R22 대체냉매 및 R134a의 포화증기 온도변화에 따른 외부 응축 열전달계수에 관한 연구)

  • Yoo Gil-Sang;Hwang Ji-Hwan;Park Ki-Jung;Jung Dongsoo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.17 no.11
    • /
    • pp.981-989
    • /
    • 2005
  • In this study, external condensation heat transfer coefficients (HTCs) are measured on a low fin tube and Turbo-C tubes at the saturated vapor temperature of $30^{\circ}C$, $39^{\circ}C$, and $50^{\circ}C$ for R22, R410A, R407C and R134a with the wall subcooled at $3{\~}8^{\circ}C$. The HTCs of all refrigerants decreased as increasing the saturation temperature from $30^{\circ}C$ to $50^{\circ}C$. This trend is due to better thermodynamic properties of the liquid phase at low temperature Beatty and Katz's prediction yielded a $20.0\%$ deviation for the low fin tube data. The heat transfer enhancement factors for the 26 fpi low fin tube and Turbo-C tubes are 4.0${\~}$5.5 and 3.0${\~}$8.1 respectively for the refrigerants tested. Finally the performance of Turbo-C tube is better than that of the low fin tube.

The Experimental Study on the Heat Transfer of HFC134a for Condensation Tubes with Various Enhanced Surfaces (응축전열관 외부형상 변화에 따른 HFC134a의 열전달 실험)

  • Park Chan-Hyoung;Lee Young-Su;Jeong Jin-Hee;Kang Yong-Tae
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.18 no.8
    • /
    • pp.613-619
    • /
    • 2006
  • The objectives of this paper are to study the characteristics of heat transfer for enhanced tubes (19.05 mm) used in the condenser with high saturation temperatures and to provide a guideline for optimum design of a condenser using HFC134a. Three different enhanced tubes are tested at a high saturation temperature of $59.8^{\circ}C$ (16 bar); a low-fin and three turbo-C tubes.. The refrigerant, HFC134a is condensed on the outside of the tube while the cooling water flows inside the tube. The film Reynolds number varies from 130 to 330. The wall subcooling temperature ranges from $2.7^{\circ}C$ to $9.7^{\circ}C$. This study provides experimental heat transfer coefficients for condensation on the enhanced tubes. It is found that the turbo-C(2) tube provides the highest heat transfer coefficient.

Pool Boiling Heat Transfer Coefficients of New Refrigerants on Various Enhanced Tubes (열전달 촉진관에서 신냉매의 풀비등 열전달계수)

  • 박진석;김종곤;정동수;김영일
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.13 no.8
    • /
    • pp.710-719
    • /
    • 2001
  • Pool boiling heat transfer coefficients (HTCs) of HCFC123, HFC134a, HCFC22, HFC407C, HFC410A and HFC32 wre measured on a horizontal smooth tube, 26 fpi low fin tube, Turbo-B and Thermoexcel-E enhanced tubes. AN experimental apparatus was designed such that all tubes heated by cartridge heaters could be installed at the same time to save the refrigerant. Data were taken in the pool of $7^{\circ}C$ with the heat flux decreasing from 80 kW/$m^2\;to\;5kW/m^2$. Test results showed that HTCs of pure refrigerants and those of a azeotrope were greatly influenced by reduced pressure. HTCs of HFC407C were 21~25% lower than those of HCFC22 due to mass transfer resistance. For all refrigerants, enhanced tubes with sub-surface and sub-tunnels showed the largest heat transfer enhancement. Especially the largest heat enhancement was obtained for HCFC123 whose reduced pressure is the lowest among al the refrigerants tested. This indicates that either Turbo-B or Thermoexcel-E enhanced tube would be the best choice when used with a low vapor pressure refrigerant.

  • PDF

Condensation Heat Transfer Coefficients of Flammable Refrigerants on Various Enhanced Tubes

  • Park Ki-Jung;Jung Dongsoo
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.10
    • /
    • pp.1957-1963
    • /
    • 2005
  • In this study, external condensation heat transfer coefficients (HTCs) of six flammable refrigerants of propylene (RI270), propane (R290), isobutane (R600a), butane (R600), dimethylether (RE170), and HFC32 were measured at the vapor temperature of $39^{\circ}C$ on a 1023 fpm low fin and Turbo-C tubes. All data were taken under the heat flux of $32\~116\;and\;42\~142kW/m^2$ for the low fin and Turbo-C tubes respectively. Flammable refrigerants' data obtained on enhanced tubes showed a typical trend that external condensation HTCs decrease with increasing wall subcooling. HFC32 and DME showed up to $30\%$ higher HTCs than those of HCFC22 due to their excellent thermophysical properties. Propylene, propane, isobutane, and butane showed similar or lower HTCs than those of HCFC22. Beatty and Katz' correlation predicted the HTCs of the flammable refrigerants obtained on a low fin tube within a mean deviation of $7.3\%$. Turbo-C tube showed the best performance due to its 3 dimensional surface geometry for fast removal of condensate.

A Study on Finned Tube Used in Turbo Refrigerator(II) - on boiling heat transfer - (터보 냉동기용 핀 튜브에 관한 연구(II) - 비등 열전달에 관하여 -)

  • Han, Kyu-Il;Kim, Si-Young;Cho, Dong-Hyun
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.5 no.2
    • /
    • pp.119-127
    • /
    • 1993
  • This work studies for heat transfer and pressure drop performance of integral inner and outer fin tubes, designed to enhance the heat transfer performance of smooth tubes for in recipro and turbo refrigerator or high performance compact heat exchangers. Eight different inner spiral fin copper tubes with integral fin at outside surfaces were employed to improve boiling heat transfer coeffcient. For comparison, tests were made using a plain tube having the inside diameter and an outside diameter equal to that at the root of the fins for the finned tubes. Pool boiling heat transfer is investigated experimentally and theoretically on single tube arrangement. The refrigerant evaporates at a saturation state of 1 bar on the outside tube surface heated by hot water. The refrigerant R11 ($CFCl_3$) was used at a pressure of $P_s=1bar$ as a convenient test fluid with a boiling temperature of $T_s=23.6^{\circ}C$. The observed heat transfer enhancement of boiling for finned tubes significantly exceeded that to be expected on grounds of increased area. The maximum Vapor - side enhancement(i.e., vapor - side heat transfer coefficient of finned tube/vapor - side coefficient for plain tube) was found to be around 4 at 1299fpm - 30grooves tube.

  • PDF