• 제목/요약/키워드: Turbine-generator

검색결과 992건 처리시간 0.027초

고압전동기 모델 코일의 절연상태 분석 (Analysis of Insulation Condition in High Voltage Motor Model Coils)

  • 김희동;공태식;김병래
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2003년도 하계학술대회 논문집 C
    • /
    • pp.1612-1614
    • /
    • 2003
  • 80pF capacitive couplers were connected to six 6.6kV motor model coil terminals. The voltage applied to the coils were 3.81kv, 4.76 kV and 6.6kV, respectively. These stator coils have various types of artificial insulation defects such as large voids, semi-conductive coating damage and strand insulation fault. Digital PD detector(PDD) and turbine generator analyzer(TGA) were used to measure PD activity. TGA summarizes each plot with two quantities such as the normalized quantity number(NQN) and the peak PD magnitude(Qm). The PD levels in PD were measured with a conventional digital PD detector. Most of the defect mechanism of large motor stator winding can be associated with PD patterns such as internal and slot discharges. PD patterns coincide with PDD and TGA. These instruments have an input bandwidth of 40-400kHz and 0.1-350MHz. Surge testing detects faults in inter-turn winding of high voltage motor model coils.

  • PDF

고압회전기 고정자 권선의 부분방전 측정 (Partial Discharge Measurements of High Voltage Rotating Machine Stator Windings)

  • 김희동;이영준;공태식
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2003년도 하계학술대회 논문집 C
    • /
    • pp.1828-1830
    • /
    • 2003
  • Partial discharge(PD) tests are used to evaluate the insulation condition of stator windings in two 4.16kV and three 6.6kV motors. These tests were conducted using a conventional partial discharge detector(PDD) and turbine generator analyzer(TGA). Off-line PD measurements were performed on five high voltage motors. PD magnitudes ranged from 1000 pC to 5400 pC at the normal line-to-ground voltage. Five high voltage motors have been equipped with 80pF epoxy-mica coupler on the motor terminal box. The PD pulse from sensors were measured with the TGA instrument. TGA summarizes each plot with two Quantities such as the peak PD magnitude(Qm) and the total PD activity(NQN). The defect mechanisms of high voltage motor can be associated with PD patterns such as internal, slot and conductor surface discharges. The PDD and TGA test results of No. 4 motor showed that internal discharge was detected in voids of the groundwall insulation.

  • PDF

연속 시적분 (CTI) 기반 풍력발전단지 시모의 해석 (Continuation Time Integration (CTI)-Based Time Domain Simulation Analysis for Wind Farms)

  • 조성구;송화창;이장호
    • 전기학회논문지
    • /
    • 제59권11호
    • /
    • pp.1971-1979
    • /
    • 2010
  • As a result of increasing environmental concern, the penetration of renewable power on power systems is now increasing. Wind energy can be considered as the most economical energy sources to generate electricity without depletion of fossil fuel. To devise adequate control strategies for wind farm, time domain simulation analysis needs to be performed. This presents a continuation time integration (CTI)-based time domain simulation algorithm for wind farm with doubly fed asynchronous generator (DFAG) connected to the external power systems. This paper depicts how to time trajectories are traced using CTI-based time domain simulation. Also this paper describes the possibilities of hierachical control for wind farm output limitation, and the coordinated control has been designed by hierarchical control structured from central control level to wind farm control board and to an individual wind turbine level. Finally it shows an illustrative example of time domain simulation result with two test systems through case study.

계통 연계형 인버터의 DC-Link 전압 가변을 통한 소형 풍력발전 시스템의 MPPT 제어 (The MPPT Control of a Small Wind Power Generation System by Adjusting the DC-Link Voltage of a Grid-connected Inverter)

  • 박민기;이준민;홍주훈;김영석
    • 전기학회논문지
    • /
    • 제63권10호
    • /
    • pp.1402-1411
    • /
    • 2014
  • In this paper, the Maximum Power Point Tracking(MPPT) control of the small scale wind power generation system with a three-phase diode rectifier and the grid-connected inverter is studied. Without the need for the converter circuits to control speed of the generator, it is economical and the structure is simple. Compared with existing systems, it can be to reduce the power semiconductor switches and passive elements, and to implement the MPPT control with only DC-Link voltage control of the grid-connected inverter. In order to allow MPPT control without the characteristic information of the wind turbine, the P&O algorithm is applied, and these are verified by the simulation and experiment.

A New Random SPWM Technique for AC-AC Converter-Based WECS

  • Singh, Navdeep;Agarwal, Vineeta
    • Journal of Power Electronics
    • /
    • 제15권4호
    • /
    • pp.939-950
    • /
    • 2015
  • A single-stage AC-AC converter has been designed for a wind energy conversion system (WECS) that eliminates multistage operation and DC-link filter elements, thus resolving size, weight, and reliability issues. A simple switching strategy is used to control the switches that changes the variable-frequency AC output of an electrical generator to a constant-frequency supply to feed into a distributed electrical load/grid. In addition, a modified random sinusoidal pulse width modulation (RSPWM) technique has been developed for the designed converter to make the overall system more efficient by increasing generating power capacity and reducing the effects of inter-harmonics and sub-harmonics generated in the WECS. The technique uses carrier and reference waves of variable switching frequency to calculate the firing angles of the switches of the converter so that the three-phase output voltage of the converter is very close to a sine wave with reduced THD. A comparison of the performance of the proposed RSPWM technique with the conventional SPWM demonstrated that the power generated by a turbine in the proposed approximately increased by 5% to 10% and THD reduces by 40% both in voltage and current with respect to conventional SPWM.

풍력발전과 전기자동차가 전력계통의 신뢰도에 미치는 영향 평가 (Impact Analysis of Wind Power on Power System Reliability with Electric Vehicles)

  • 김담;박현곤;권헌규;박종근
    • 전기학회논문지
    • /
    • 제64권11호
    • /
    • pp.1535-1542
    • /
    • 2015
  • An increasing number of electric vehicles (EVs) in power system affects its reliability in various aspects. Especially under high EV penetration level, new generating units are required to satisfy system's adequacy criterion. Wind power generation is expected to take the major portion of the new units due to environmental and economic issues. In this paper, the system reliability is analyzed using Loss of Load Expectation (LOLE) and Expected Energy Not Served (EENS) under each and both cases of increasing wind power generation and EVs. A probabilistic multi-state modeling method of wind turbine generator under various power output for adequate reliability evaluation is presented as well. EVs are modeled as loads under charging algorithm with Time-Of-Use (TOU) rates in order to incorporate EVs into hour-to-hour yearly load curve. With the expected load curve, the impact of EVs on the system adequacy is analyzed. Simulations show the reliability evaluation of increasing wind power capacity and number of EVs. With this method, system operator becomes capable of measuring appropriate wind power capacity to meet system reliability standard.

Loss of a Main Feedwater Pump Test Simulation Using KISPAC Computer Code

  • Jeong, Won-Sang;Sohn, Suk-Whun;Seo, Ho-Taek;Seo, Jong-Tae
    • Nuclear Engineering and Technology
    • /
    • 제28권3호
    • /
    • pp.265-273
    • /
    • 1996
  • Among those tests performed during the Yonggwang Nuclear Power Plant Units 3 and 4 (YGN 3&4) Power Ascension Test period, the Loss of a Main Feedwater Pump test at l00% power is one of the major test which characterize the capability of YGN 3&4. In this event, one of the two normally operating main feedwater pumps is tripped resulting in a 50% reduction in the feedwater flow. Unless the NSSS and Turbine/Generator control systems actuate properly, the reactor will be tripped on low SG water level or high pressurizer pressure. The test performed at Unit 3 was successful by meeting all acceptance criteria, and the plant was stabilized at a reduced power level without reactor trip. The measured test data for the major plant parameters are compared with the predictions made by the KISPAC computer code, an updated best-estimate plant performance analysis code, to verify and validate its applicability. The comparison results showed good agreement in the magnitude as well as the trends of the major plant parameters. Therefore, the KISPAC code can be utilized for the best-estimate nuclear power plant design and simulation tool after a further verification using other plant test data.

  • PDF

발전소 사업장의 안전교육 효과성 향상을 위한 QR Code 활용방안 연구 (A Study on the Utilization of QR Code for Improving the Effectiveness of Safety Education in Power Plant Workplaces)

  • 오명근;김영국;정경옥
    • 대한안전경영과학회지
    • /
    • 제24권2호
    • /
    • pp.33-39
    • /
    • 2022
  • In order to improve the implementation of safety and health education at the site for industrial accident prevention activities, research was conducted to minimize inconvenience and increase utilization by redesigning and developing existing education methods. To date, occupational safety and health education has been conducted without considering the general work characteristics and functional facilities (mechanical, electrical, instrumentation, chemical) of workers (mechanical: turbine, valve, pump, hydraulic system, electrical: generator, breaker, motor, etc.). In particular, plant facilities were classified as mechanical and electrical facilities to improve the methodology for industrial safety and health education for plant maintenance workers. In addition, the "One Page Education Plan" was announced as a learning case because the spread of COVID-19 infectious diseases made it impossible to reduce or control the number of people in all groups and groups. The improvement of this training method will play a major role in improving the effectiveness of safety education in power plant workplaces.

Comparison of event tree/fault tree and convolution approaches in calculating station blackout risk in a nuclear power plant

  • Man Cheol Kim
    • Nuclear Engineering and Technology
    • /
    • 제56권1호
    • /
    • pp.141-146
    • /
    • 2024
  • Station blackout (SBO) risk is one of the most significant contributors to nuclear power plant risk. In this paper, the sequence probability formulas derived by the convolution approach are compared with those derived by the conventional event tree/fault tree (ET/FT) approach for the SBO situation in which emergency diesel generators fail to start. The comparison identifies what makes the ET/FT approach more conservative and raises the issue regarding the mission time of a turbine-driven auxiliary feedwater pump (TDP), which suggests a possible modeling improvement in the ET/FT approach. Monte Carlo simulations with up-to-date component reliability data validate the convolution approach. The sequence probability of an alternative alternating current diesel generator (AAC DG) failing to start and the TDP failing to operate owing to battery depletion contributes most to the SBO risk. The probability overestimation of the scenario in which the AAC DG fails to run and the TDP fails to operate owing to battery depletion contributes most to the SBO risk overestimation determined by the ET/FT approach. The modification of the TDP mission time renders the sequence probabilities determined by the ET/FT approach more consistent with those determined by the convolution approach.

풍력발전(DFIG)의 고압배전선로의 사고특성 해석에 관한 연구 (A Study on Fault Characteristics of Wind Power in Distribution Feeders)

  • 김소희;김병기;노대석
    • 한국산학기술학회논문지
    • /
    • 제13권3호
    • /
    • pp.1288-1295
    • /
    • 2012
  • 2008년도 지식경제부의 전망에 의하면 신재생에너지전원 중 풍력발전의 보급전망은 2020년 37%, 2030년 42%에 달하고, 2012년부터 시행 예정인 신재생에너지 의무할당제(Renewable Portfolio Standard-RPS)의 도입으로 태양광 및 풍력 등의 신재생에너지가 향후 지속적으로 배전계통에 연계 운용될 것으로 예상된다. 현재 풍력은 배전계통에 전용선로로 연계되어 계통에 미치는 영향은 미미하지만, 3[MW] 이상의 대규모 풍력발전이 일반 배전선로로 확대 운용되면, 풍력발전 연계용 변압기 및 풍력발전기의 %임피던스에 의한 사고전류 변동으로 보호계전기(OCR, OCGR)의 오 부동작을 야기할 수 있다. 따라서 본 논문에서는 대표적인 풍력발전기인 이중여자유도발전기(Double-Fed Induction Generator-DFIG)가 고압 배전선로에 연계되어 운전되는 경우, 3상단락, 2선단락 및 1선지락의 사고특성을 분석하기 위하여, 전력계통 상용소프트웨어인 PSCAD/EMTDC를 이용하여 풍력발전기의 모델링과 시뮬레이션을 수행하고, 대칭좌표법을 통한 이론적인 수치해석의 결과치를 비교/분석하여, 제안한 수법의 유용성을 확인하였다.