• Title/Summary/Keyword: Turbine wheel

Search Result 52, Processing Time 0.021 seconds

A study on Mass Unbalance Vibration Generated from 200MW Steam Turbine Synchro Clutch Coupling (증기터빈용 Synchro Clutch Coupling에서 발생하는 진동에 관한 연구)

  • Shim, Eung-Gu;Kim, Young-Kyun;Moon, Seung-Jae;Lee, Jae-Heon
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.232-235
    • /
    • 2008
  • The vibration of steam turbine is caused by Mass Unbalance, Shaft Misalignment, Oil Whip and Rubbing etc. but in turbine which is normally operated and maintained, the Mass Unbalance component possesses the greatest portion. Our power plant has two steam turbines in capacity of 200MW and 135MW respectively and each turbine is supported by 6 journal bearings. However, we had many difficulties because the vibration amplitude of No 3 and 4 Bearings was high during the start-up and operation mode change of steam turbine. But, with this study, we completely solved the vibration problem caused by the mass unbalance of No 1 steam turbine. Until a recent date, No 3 and 4 bearings which support high pressure turbine for No 1 steam turbine had shown about 135${\mu}$m in vibration amplitude (sometimes it increased to 221${\mu}$m maximum. alarm: 6mils, trip: 9mils) at base load. After applying the study, they decreased to about 40${\mu}$m maximum. It is a result from that we did not change the setting value of Bearing Alignment and only changed the assembly position of internal parts in Synchro Clutch Coupling Rachet Wheel which links between high pressure turbine and low pressure turbine, and increased the internal gap and machining of the Pawl stopper surface. In the operation of steam turbine, if the vibration value increases by 1X, we should reduce the vibration of bearing by weight balancing. However, unless the vibration of bearing is declined by the balancing, we will have to disassemble and check the component and find the cause. In this study, We researched the way to lower mass unbalance that is 1X vibration component which has the greatest portion of vibration generated by steam turbine and We got good result by applying the findings of this study.

  • PDF

Experiments on Efficiency of Standing Type Waterwheel with Narrow Canal for Micro/Small Scale Hydro Power Plant (초소수력발전용 좁은 수로 고정형 수직수차 성능실험)

  • Kim, Dong-Jin;Lee, Kyong-Ho;Ahn, Kook-Chan;Kim, Bong-Hwan;Lee, Chi-Woo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.5
    • /
    • pp.104-108
    • /
    • 2012
  • Recently, small scale hydropower needs to be developed due to its clean, renewable and abundant energy resources. However, suitable draft of hydro-turbine body in combination with differences in wheel blade shapes is not determined yet in the range of small hydropower and it is necessary to study for the effective draft in combination with type. Therefore, watermill shaped of 250mm diameter. hydro-turbine aiming 20 watt class generator is adopted in this study because of its simple structure and high possibility of applying to small hydropower. The result shows that effective draft for the turbine body is variable concerning the size of turbine and flow rate of water. Thus, the difference of water depth between fore and aft turbine body contributes to the increase of torque, angular momentum and power output.

Evaluating Nanomechanical Properties on Interface of Friction-welded TiAl and SCM440 Alloys with Cu as an Insert Metal (삽입금속 Cu를 적용한 TiAl 합금과 SCM440의 마찰용접 계면의 나노역학물성 평가)

  • Kim, Ki-Young;Oh, Myung-Hoon;Choi, In-Chul
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.34 no.6
    • /
    • pp.309-314
    • /
    • 2021
  • Due to the superior corrosion resistance and mechanical properties of TiAl alloy at high temperature, it has been utilized as a turbine wheel of a turbocharger. The dissimilar metallic bonding is usually applied to combine the TiAl turbine wheel with the SCM440 structural steel which is used as a driving shaft. In this study, the TiAl and SCM440 joint were fabricated by using a friction welding technique. During bonding process, to suppress the martensitic transformation and the formation of cracks, which might reduce a strength of the joints, Cu was used as an insert metal to relieve stress. As a result, the intermetallic compounds (IMCs) layer was observed at TiAl/Cu interface while no IMC formation was formed at SCM440/Cu interface. Since understanding of the IMCs effects on the mechanical performance of welded joint is also essential for ensuring the reliability and integrity of the turbocharger system, we estimated the nanohardness of welded joint region through nanoindentation. The relation between the microstructural feature and its mechanical property is discussed in detail.

Development of New Ni-based Cast Superalloy with Low Density and High Temperature Capability for Turbine Wheel in Automotive Turbocharger (자동차 터보충전기 터빈휠용 경량 고내열 주조 Ni기 초합금의 개발)

  • Yutaro Oki;Yoshinori Sumi;Yoshihiko Koyanagi
    • Journal of Korea Foundry Society
    • /
    • v.42 no.6
    • /
    • pp.392-397
    • /
    • 2022
  • In order to compliant the stringent exhaust emission regulations, higher fuel efficiency and cleaner exhaust gas in combustion engines have been required. To improve combustion efficiency, an exhaust gas temperature is increasing, therefore higher temperature resistance is required for components in exhaust system, especially turbine wheel in turbocharger. IN100 looks quite attractive candidate as it has high temperature properties with low density, however it has low castability due to poor ductility at high temperature. In this study, the balance of Al and Ti composition was optimized from the base alloy IN100 to improve the high temperature ductility by expanding the γ single phase region below the solidification temperature, while obtaining the high temperature strength by maintaining the volume fraction of γ' phase equivalent to IN100 around 1000℃. Furthermore, the high temperature creep rupture life increased by adding a small amount of Ta. The alloy developed in this study has high castability, low density and high specific strength at high temperature.

Measurement of Inertia of Turbocharger Rotor in a Passenger Vehicle (승용차용 터보과급기 로터의 관성모멘트 측정)

  • Chung, Jin Eun;Lee, Sangwoon
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.24 no.1
    • /
    • pp.33-38
    • /
    • 2016
  • The turbocharger is an essential component to realize the engine down-sizing. The moment of inertia of turbocharger rotor is an important parameter with respect to acceleration performance of the vehicle. It can be calculated from the CAD software based the geometry data and the material properties. But the accurate value of the inertia of turbocharger rotor must be measured through the experimental method. In this study, the measurement of moment of inertia of turbocharger rotor for 2.0 L spark-ignition engine was carried out. First, an experimental equipment using a trifilar method was designed and fabricated. Some optical devices, that is, photo sensor, counter, convex lens, etc, were used to increase the accuracy of the measurement. Second, error sensitivity for the equipment was analyzed. The error of period time and the radius can give big affects to the accuracy of the moment of inertia. When the amount of error of these two were each 1.0 %, maximum error of the moment of inertia was under 3.0 %. Third, the calibration for the equipment was performed using a calibration rotor which has similar shape to turbine rotor but simple. Calculated value from CAD software and measured one for the calibration rotor were compared. The total error of the equipment and the measurement is about 1.3 %. This result shows that the equipment can give the good result with resonable accuracy. Finally the moment of inertia of the turbine rotor and compressor wheel were measured. The coefficient of variations, the ratio of standard deviation to mean value, were reasonably small at 0.57 % and 0.73 % respectively. Therefore this equipment is suitable for the measurement of the moment of inertia of the turbine rotor and compressor wheel.

Development of Pump-Drive Turbine with Hydrostatic Bearing for Supercritical CO2 Power Cycle Application (정압 베어링을 적용한 초임계 CO2 발전용 펌프-구동 터빈 개발)

  • Lee, Donghyun;Kim, Byungock;Park, Mooryong;Yoon, Euisoo
    • Tribology and Lubricants
    • /
    • v.36 no.3
    • /
    • pp.153-160
    • /
    • 2020
  • In this paper, we present a hydrostatic bearing design and rotordynamic analysis of a pump-and-drive turbine module for a 250-kW supercritical CO2 cycle application. The pump-and-drive turbine module consists of the pump and turbine wheel, assembled to a shaft supported by two hydrostatic radial and thrust bearings. The rated speed is 21,000 rpm and the rated power is 143 kW. For the bearing operation, we use high-pressure CO2 as the lubricant, which is supplied to the bearing through the orifice restrictor. We calculate the bearing stiffness and flow rate for various orifice diameters, and then select the diameter that provides the maximum bearing stiffness. We also conduct a rotordynamic analysis based on the design parameters of the pump-and-drive turbine module. The predicted Campbell diagram shows that there is no critical speed below the rated speed, owing to the high stiffness of the bearings. Furthermore, the predicted damping ratio indicates that there is no unstable mode. We conduct the operating tests for the pump and drive turbine modules within the supercritical CO2 cycle test loop. The pressurized CO2, at a temperature of 136℃, is supplied to the turbine and we monitor the shaft vibration during the test. The test results show that there is no critical speed below the rated speed, and the shaft vibration is controlled to below 3 ㎛.

Study on the Crack Occurrence and Progress by Durability Test for Vehicular Turbine Housing (차량용 터빈 하우징의 내구시험에 의한 균열 발생 및 진행에 대한 연구)

  • Shin, Sang-Yun;Lee, Do-Hoon;Won, Soon-Jea;Kim, Dong-Hyoung;Ye, Byung-Joon
    • Journal of Korea Foundry Society
    • /
    • v.38 no.2
    • /
    • pp.48-54
    • /
    • 2018
  • To improve the durability of the turbocharger, it is important to suppress cracking of the turbine housing; therefore, we investigated the initiation and growth of these cracks. First, we initiated a crack in the turbine housing using endurance experiments. After the endurance test, cracks mainly occurred in the valve seat, the nozzle area, and the scroll part of the turbine housing. The results of a fracture analysis of the cracks showed that cracks in the valve seat were initiated by fatigue fracture. This seems to be caused by the accumulation of mechanical and thermal stresses due to vibration of the turbine wheel and high-temperature exhaust gas. Also, cracks in nozzle and scroll area were initiated by intergranular corrosion due to the exhaust gas. Thus, although there are differences in the cause of initiation according to the site, a concentric waveform was observed in all fracture planes. This phenomenon indicates that cracks gradually grow due to repeated stress changes, and the main causes are the temperature difference of the exhaust gas and the vibration caused by the turbine shaft.

A Design of Model Following Optimal Multivariable BOiler-Turbine H_\infty Control System using Genetic Algorithm (유전 알고리즘을 이용한 모델 추종형 최적 다변수 보일러-터빈 H_\infty제어 시스템의 세계)

  • Hwang, Hyeon-Jun;Kim, Dong-Wan;Park, Jun-Ho;Hwang, Chang-Seon
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.2
    • /
    • pp.127-135
    • /
    • 1999
  • Multivarialbe Boiler-Turbine H_\infty Control System Genetic Algorithm Weighting Functions $W_1$(s), $W_2$(s), and design parameter $\gamma$ that are given by Glover-Doyle algorithm, to optimally follow the output of reference model. The first method to do this is that the gains of weighting functions $W_1$(s), $W_2$(s), and design parameter are optimized simultaneously by genetic algorithm with the tournament method that can search more diversely, in the search domain which guarantees the robust stability of system. And the second method is that not only by genetic algorithm with the roulette-wheel method that can search more fast, in that search domain. The boiler-turbine H_\infty control system designed by theabove second method has not only the robust stability to a modeling error but also the the better command tracking preformance than those of the H_\infty control system designed by trial-and-error method and the above first method. Also, this boiler-turbine H_\infty control system has the better performance than that of the LQG/LTR contro lsystem. The effectiveness of this boiler-turbineH_\infty control system is verified by computer simulation.

  • PDF

Measurement of Moment of Inertia of a Small Turbocharger Rotor (소형 터보과급기 로터의 관성모멘트 측정)

  • Chung, Jin-Eun;Jeon, Se-Hun;Lee, Sang-Woon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.3
    • /
    • pp.711-717
    • /
    • 2017
  • Measurements of the moment of inertia of a small turbocharger rotor were studied. A measuring device was manufactured using the trifilar method and the moment of inertia of the calibration rotor was measured to verify the device. The coefficient of variation was 0.43% and the error was 0.75%. The results showed that the device is suitable for measuring the moment of inertia of a turbocharger rotor. Next, the moment of inertia for two turbine rotors and compressor wheels was measured. Those for the turbine rotors showed precise and accurate results in that the coefficients were under 1.0% and the errors were under 3.0%. On the other hand, those for the compressor wheel were precise but inaccurate in that the coefficients were under 1.0% and the errors were over 24.4%. Therefore an indirect method for the compressor wheel was suggested. The results showed that the coefficients were under 1.2% and the errors were under 7.88%.

Characteristics of Transient Performance in a Turbocharged GDI Engine with TiAl Turbine (TiAl 터빈을 적용한 과급 직분식 전기점화 엔진의 과도운전 성능특성)

  • Park, Chansoo;Jung, Jinyoung;Bae, Choongsik
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.23 no.3
    • /
    • pp.299-306
    • /
    • 2015
  • Turbocharged gasoline direct injection engine is one of promising technologies in the automotive industry. However, reduction in turbo-lag under transient operation is one of important challenging points to improve drivability. Engine transient performance was investigated in a 4-cylinder 2.0 L turbo-gasoline direct injection (T-GDI) engine using Inconel and TiAl (Titanium Aluminide alloy) turbine wheel turbochargers. The TiAl turbocharger performed superior transient boost pressure and torque rises under various engine transient operation conditions. These were mainly due to lower turbine rotational inertia of TiAl turbocharger. The Maximum boost pressure and torque build up were founded in 1500 rpm and 2000 rpm, instant load change from 20% to 100% of pedal position.