• Title/Summary/Keyword: Turbine engine

Search Result 631, Processing Time 0.024 seconds

Estimation Methods for Turbine Nozzle Throat Area Reduction of A LOx/Kerosene Gas Generator Cycle Liquid Propellant Rocket Engine (액체산소/케로신 가스발생기 사이클 액체로켓엔진 터빈 노즐목 면적 변화 추정 방법)

  • Nam, Chang-Ho;Moon, Yoonwan;Park, Soon Young;Kim, Jinhan
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.23 no.5
    • /
    • pp.101-106
    • /
    • 2019
  • Carbon deposition on the turbine nozzle throat of a LOx/kerosene gas generator cycle(open cycle) engine causes performance reduction of the engine. Estimation methods for a turbine nozzle throat area are proposed. The discharge coefficient of the turbine nozzle was estimated with the turbine gas properties such as gas constant, specific heat ratio, and temperatures. The pressure ratio and temperature ratio of the turbine nozzle throat, was utilized to estimate the discharge coefficient also. Estimated discharge coefficient of turbine nozzle throat of KSLV-II 1st stage engine shows the carbon deposition effects on the turbine nozzle throat of a LOx/kerosene open cycle engine.

Preliminary Design Procedure of Electric Starting System for Small GasTurbine Engine (소형 가스터빈엔진 전기시동 시스템 기본설계 절차)

  • Lim, Byeung-Jun;Rhee, Dong-Ho;Jun, Yong-Min;Ahn, Iee-Ki
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.829-832
    • /
    • 2010
  • For gas turbine engine starting, external power should be supplied with engine to accelerate to suitable rotational speed for air and fuel ignition conditions. Electric starting system for small gas turbine engine has simple system and light weight, so it is generally used for small aircraft. For system analysis of gas turbine engine electric starting system, Characteristics of battery, start motor, engine drag torque should be analyzed and theirs temperature effects should be considered. In this paper, preliminary design procedure of small gas turbine engine electric starting system and major design parameters were described.

  • PDF

Parametric Cycle Analysis of a Turbofan Engine with Turbine Cooling (터보팬 엔진에서 터빈 냉각이 성능에 미치는 영향에 대한 수치적 해석)

  • Hwang, Jin-Seok;Moon, Hee-Jang;Koo, Ja-Ye
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.14 no.1
    • /
    • pp.15-21
    • /
    • 2006
  • Parametric cycle analysis of a dual-spool, mixed exhaust turbofan engine with turbine blade cooling were described to investigate the effect of turbine blade cooling on the engine performance such as specific thrust and thrust specific fuel consumption. Coolant of low pressure turbine triggers high engine performance loss and cooling effect loss in high pressure turbine. Therefore low pressure turbine coolant should be much more considered for effective design.

  • PDF

Implementation of Constant Power Controlled Starter for A Turbo Generator System (터보 발전기 시스템을 위한 정 출력 제어 방식 시동기 구현)

  • 권정혁;양현섭;노민식;차영범
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.219-222
    • /
    • 2003
  • Turbo generator system need starter for gas turbine engine. Turbo generator has high rate gearbox for reduce rotating speed. Because a conventional generator could not operate same speed of gas turbine engine. But Recently turbo generator system is directly connected a gas turbine engine with a super high-speed generator. In this paper, starter driver are implemented direct coupled turbo generator system, Which is directly connected 100kW, 60,000rpm gas turbine engine and 25kW 60,000rpm super high speed generator.

  • PDF

A New Methodology for Advanced Gas Turbine Engine Simulation

  • M.S. Chae;Y.C. Shon;Lee, B.S.;J.S. Eom;Lee, J.H.;Kim, Y.R.;Lee, H.J.
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.369-375
    • /
    • 2004
  • Gas turbine engine simulation in terms of transient, steady state performance and operational characteristics is complex work at the various engineering functions of aero engine manufacturers. Especially, efficiency of control system design and development in terms of cost, development period and technical relevance implies controlling diverse simulation and identification activities. The previous engine simulation has been accomplished within a limited analysis area such as fan, compressor, combustor, turbine, controller, etc. and this has resulted in improper engine performance and control characteristics because of limited interaction between analysis areas. In this paper, we propose a new simulation methodology for gas turbine engine performance analysis as well as its digital controller to solve difficulties as mentioned above. The novel method has particularities of (ⅰ) resulting in the integrated control simulation using almost every component/module analysis, (ⅱ) providing automated math model generation process of engine itself, various engine subsystems and control compensators/regulators, (ⅲ) presenting total sophisticated output results and easy understandable graphic display for a final user. We call this simulation system GT3GS (Gas Turbine 3D Graphic Simulator). GT3GS was built on both software and hardware technology for total simulation capable of high calculation flexibility as well as interface with real engine controller. All components in the simulator were implemented using COTS (Commercial Off the Shelf) modules. In addition, described here includes GT3GS main features and future works for better gas turbine engine simulation.

  • PDF

Experimental Research on the Performance of Air Turbine Starter for Gas Turbine Engines (가스터빈 엔진용 공기터빈 시동기 성능에 관한 실험적 연구)

  • Kim, Chun-Taek;Yang, In-Young;Cha, Bong-Jun
    • The KSFM Journal of Fluid Machinery
    • /
    • v.15 no.4
    • /
    • pp.27-32
    • /
    • 2012
  • Gas turbines for an aircraft have the start and restart capabilities within their flight envelop. It is an important item for engine qualification and substantiated with the test. Experimental investigations were carried out to find the relation between the corrected torque and the corrected rotating speed of an air turbine starter in this study. A dedicated air supply system for the air turbine starter and a special device to measure the torque and the rotating speed of the air turbine starter were developed and installed at the altitude engine test facility in Korea Aerospace Research Institute. Experimental results show that the relations between the corrected torque and the corrected rotating speed of the air turbine starter are linear and the inlet temperature and pressure conditions for the air turbine starter were found out to provide minimum required torque for the engine qualification test at various altitude. The start and restart tests for the currently developing engine were successfully performed using this experimental results.

A Study on the Effect of Turbine Nozzle with Fillet on Performance Characteristics of a Gas Turbine Engine (터빈 노즐의 Fillet 설치에 따른 가스터빈 엔진의 성능 특성에 관한 연구)

  • Kim, Jae-Min;Jin, Sang-Wook;Kim, Kui-Soon;Choi, Jeong-Yeol;Kim, Chun-Taek
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.542-545
    • /
    • 2009
  • In this study, the effect of turbine geometry on the overall performance of a gas turbine was investigated by computational fluid dynamics. Overall engine performance was predicted through a full engine simulation program which can predict the interactions of the compressor, the combustor and the turbine. The compressor and the turbine analysis code solves 2D and 3D Navier-Stokes equations respectively. The chemical equilibrium code was applied to simulate the combustor. The computations were performed for two different shapes of turbine nozzle. The nozzle shapes adopted a baseline blade and a blade with fillet.

  • PDF

Steady-State and Transient Performance Simulation of a Turboshaft Engine with a Free Power Turbine

  • King, Chang-Duk;Chung, Suk-Choo
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.11
    • /
    • pp.1296-1304
    • /
    • 2000
  • A program of steady-state and transient performance analysis for a 200kW-class small turboshaft engine with free power turbine was developed. An existing turbojet engine was used for the gas generator of the developed turboshaft engine, which was modified to satisfy performance requirements of this turboshaft engine. To verify the accuracy of steady-state performance program for this engine: the program was applied to the gas turbine test unit of the same type, and the analysis results were compared with experimental results. The developed transient performance analysis program using the CMF (Constant Mass Flow) method was utilized to analyze the cases of step increase and ramp increase of the fuel.

  • PDF

5MW Class Gas Turbine Engine Test Cell (5MW급 발전용 가스터빈 엔진 성능시험 설비)

  • Nam, Sam-Sik;Song, Ju-Young;Kim, Sung-Hyun;Lee, Ki-Hoon
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.339-342
    • /
    • 2010
  • Doosan Heavy Industries & Construction Co., Ltd. constructed a gas turbine engine test cell to verify operating characteristics and design parameters of 5MW class gas turbine engine for power generation under developing. Engine test cell was designed to satisfy critical requirements to scrutinize all performance parameters of the engine with safe and reliability in accordance with design specification. As the test cell developed can effectively reproduce engine operation conditions covering from start-up to maximum power condition, it can be utilized to make a continuing design improvement of the engine based on practical test data at full stretch. Moreover, it is expected to be serviceable to develop derivative engines and be utilized to put them into serial production and contribute to a competitiveness reenforcement as a gas turbine engine manufacturer.

  • PDF

Reverse Engineering and 3D Printing of Turbine Housing for Tank Diesel Turbo Engine

  • Chul-Kyu Jin
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.26 no.6_1
    • /
    • pp.977-983
    • /
    • 2023
  • The tank uses a twin turbo diesel engine equipped with two turbocharger systems for high output. The main component of the turbocharger system is the turbine housing through which the exhaust flows. Turbine housing is manufactured through a sand casting process, taking into account the shape and material characteristics according to the environmental conditions in which it is used. Currently, turbine housing is imported, and local production is necessary. In this study, basic research was conducted to localize the turbine housing of a tank diesel turbo engine. Reverse engineering and finite element analysis of the imported turbine housing were performed. The prototype of the turbine housing was printed using FDM and PBF 3D printers. The prototype of the turbine housing printed with an FDM 3D printer has an overall appearance similar to 3D modeling, but the printed surface of the whorl part is rough. The prototype printed with the PBF 3D printer is completely identical to the 3D modeling, including the whorl part.